목 차

. 총론	23
1. 조사개요	23
1-1. 조사대상과 방법, 조사내용	23
1) 조사대상	23
2) 조사방법(DB, 검색어, 검색기간) ······	23
3) 조사내용(조사 항목)	23
1-2. 일러두기	24
1) 연구개발 테마 시리즈의 구성	24
2) 주요기관(연구관리 기관) 약어	25
2. 미국 연구개발 정책 동향과 전략	26
2-1. 미국 및 주요국 R&D전략 비교 분석	26
1) 주요국 중점 R&D 분야 전략 비교	
(1) 주요 4개국 전략 비교	
(2) 중국, 2020년도 국가 중점 R&D 계획 ·····	27
2) 최근 연도별 R&D 예산 의견서 비교 ······	29
(1) 2020 회계연도 R&D 예산 의견서	29
(2) 2021 회계연도 R&D 예산 의견서	
3) 미국, 2020년 NITRD 프로그램 예산 요구(안)	34
4) 미국, 대학 과학기술 R&D 지원금 분석	36
5) 미국, 과학·공학 연구개발 논문 성과 국제 비교	38
2-2. 미국의 주요 연구개발 정책동향	40
1) 미국, 국가 최상위 사이버보안 연구개발 전략계획	40
2) 미국, 최상위 양자정보과학 네트워크 전략 비전	42
3) 미국, 2020년 에너지 혁신 10대 우선순위 발표	43
Ⅱ. 미국 유전자 변형 마우스 기술관련 연구개발 테마	4 9
1. 2019년 신규 과제, 과제 관리 기관별 현황	
1-1. NCI	
1) 유전자 조작 마우스 시설(2019-2020)	49

2) FLC를 유발하는 종양 단백질 표적화(2019-2020) ··································	
3) SCLC에서 LSD1 억제에 대한 민감도의 결정 인자 식별(2019-2020) ·······51	
4) 폐암에서 종양 억제의 메커니즘을 푸는 방법(2019-2024)52	
5) 공학 정밀 암 면역 요법(2019-2024)53	
6) 암 전이에 있어서 근막의 새로운 역할(2019-2020)54	
7) 조직 단면에서의 Mirna의 정량적, 다중화 및 공간적 해결을 위한 마이크로 엔지니어링	
기술(2019-2024)55	
8) 췌장암 진행에서 LIN28B의 역할에 대한 기계적 이해(2019-2024)56	
9) 전립선암에서 대사 재 프로그래밍의 기원(2019-2024)	
10) RB 결핍 종양에서 SOX2의 종양 유발 메커니즘(2019-2024)	
11) 만성 골수 단핵구 백혈병에 대한 치료 접근법을 발전시키기 위한 환자 유래 이종 이식	
모델 개발 및 인증(2019-2024)59	
12) 암에서 아세테이트의 다면적 역할(2019-2024)60	
13) 백혈병 생물학 및 화학 요법 내성에서 접히지 않은 단백질 반응 표적화(2019-2024) ···· 61	
14) 정밀 종양학 모델을 위한 생체 내 기반 편집(2019-2024)62	
15) 폐신 생물이 침습성 선혈 구종으로 진행되는 과정에서 분자 및 면역의 진화	
(2019–2024)	
16) SCLC 표현식 공간 모델링(2019-2020) ··································	
17) SCLC 치료 개선을 위한 CRISPR 비활성화 선별 및 생체 내 모델 채택	
(2019–2024)	
18) 췌장암 아형의 후생유전학적 제어에 관한 연구(2019-2024)	
19) 마우스에서 높은 등급의 혈청 암의 위험과 관련된 모델링 요소(2019-2023) 69	
20) 암 바이오마커와 주변 신경의 실시간 수술 영상화(2019-2020)70	
21) 암 프로그램에서 편향된 화학 수용체 신호(2019-2023)	
22) 악성 말초 신경 조직 종양에 대한 표적 치료(2019-2020)	
23) 암 진행에서 종양 세포 및 숙주 적응 정의(2019-2024)	
24) 동물 공유 자원(2019-2020)	
25) 전립선 발달과 암의 상피 이질성 분석(2019-2024)76	
26) 전립선암에서 공동 유전체 변형 및 전사 제어(2019-2024)77	
27) 마우스 유전학(2019)	
28) RHABDOMYOSARCOMA에서 PAX3-FOXO1 단백질의 분자 취약성 정의 및 표적화	
(2019–2024)	
29) 대장암 위험 예측을 위한 전구병변 분류법에 기초한 3차원 나노 스케일 원자력	
아키텍처 매핑(2019-2024)81	
30) 기계적으로 복잡한 마이크로 환경에서의 세포 이동(2019-2020)82	
31) 치명적인 암의 기능적 요인을 직접 생체 내에서 직접 검사 할 수 있는 신속하게 확장	
가능한 플랫폼(2019-2022)	

32) FIBROLAMELLAR HCC(2019–2020)	84
33) 가족성 및 조기발병 대장암(2019-2020)	85
34) 전립선암 뼈 전이 시 골밀도환경이 약물 내성에 미치는 영향(2019-2024)	86
35) C-TAIL 인산화에 의한 PTEN 종양 억제 기능 조절(2019-2024)	87
36) TEAD 전사의 동적 팔미토일레이션 타겟팅(2019-2024)	88
37) 암 CACHEXIA에서 TWIST1 네트워크 악용(2019-2024) ·····	88
38) BRCA1 결핍 세포에서 게놈 안정성 및 종양 억제 복원(2019-2022) ·······	90
39) 암에서 조절되지 않은 뉴클레오타이드 대사의 메커니즘 조사(2019-2024)	91
40) 종횡 조혈 및 악성에서의 PPM1D(2019-2024)	92
41) 방광암 병원체에서 H3K27 데메틸아제 KDM6A의 역할(2019-2020) ·······	93
42) 마우스에서 고분자로 매개된 초음파 발생 및 암 발생(2019-2024)	94
43) SARCOMAGENESIS에서 HIPPO 경로의 역할과 규제(2019-2024)	95
44) 인간 유두종 병리 발생의 마우스 모델(2019-2024)	97
45) SCLC 종양의 표현형 상호 작용 및 역학(2019-2020)	98
46) OMICS 코어(2019-2020) ······	99
47) 전립선암의 치료 저항성 메커니즘으로서 계통 가소성의 분자 결정자 정의	
(2019–2024)	100
48) 비 고전적 에스트로겐 신호를 사용하여 흑색종 예방(2019-2024)	101
49) 폐암 진행에서 전사 프로그램의 진화(2019-2020)	102
50) HAMARTOMA 유전자의 돌연변이가 있는 암의 대사 취약성 및 표적 식별	
(2019–2020)	103
51) 장내 에피테리움에서 ZINC 지문 전사 인자 PLAGL2에 의해 구동되는 변환 메커니	
정의(2019-2024)	··· 104
52) EGFR TKI 저항성 NSCLC에서 CXCR7 신호의 조사(2019-2024)	105
53) 공격적인 전립선암 병리학 시스템 분석(2019-2024)	107
54) 3중 음성 유방암 환자를 위한 EGFR-MAPK 경로의 예측 모델링(2019-2024) …	108
1-2. NIDDK ·····	
1) 췌장염에서 트립신 의존성 메커니즘(2019-2023)	109
2) 장내 리소자임은 MICROBIOTA에 대한 근육 면역 반응을 제어(2019-2024) ·······	
3) 포도당 항상성에서 BRD7의 규제(2019-2024) ······	112
4) 운동에 대한 대사 반응에서 GHRELIN 시스템의 역할(2019-2024) ······	··· 113
5) 운동에 의해 유발된 대사 변화의 정맥성 저산소증 조절(2019-2024)	··· 114
6) 제2형 당뇨병과 아테롬성 동맥경화증 사이의 유전적 연관성(2019-2022)	115
7) 제2형 당뇨병을 제어하는 에스트로겐 수용체에 의한 인슐린 저항성 타겟팅(2019-2023)	116
1-3. NIAMS	118
1) 미시간 피부 생물학 및 질병 대학 자원 기반 센터(2019-2024)	··· 118
2) 내 연골 뼈 재생의 기계적 조절(2019-2024)	··· 120

3)	피부 발육과 모발 성장을 제어하는 DNA 히드록시메틸화 및 TET-ENZYMES	
	(2019–2024)	· 121
4)	노스웨스턴 대학교 피부 생물학 및 질병 자원 기반 센터(2019-2024)	· 122
5)	멜라노사이트 네비이의 기원과 성장규제 발견(2019-2020)	124
1-4.	NIDCR ····	125
1)	비효율적인 상처 치유 반응으로 만성 방사선에 의한 침샘 기능 저하(2019-2024) …	125
2)	치과 및 골격광물화에서 세포외 매트릭스 단백질의 기능(2019-2024)	126
3)	고위험 구강 상피증을 위한 강력한 면역 예방 전략(2019-2024)	· 127
4)	관상 동맥 봉합 개발 중 조직 상호 작용의 분자 메커니즘(2019-2024)	128
5)	HNSCCS의 방사선 및 ANTI-PDL1에 대한 TREG 매개 저항성 해결(2019-2024) …	· 130
1-5.	NHLBI ·····	· 132
1)	동물, 생화학/분자 및 형태학 핵심(2019-2020)	· 132
2)	대사증후군 특성의 유전자별 상호작용(2019-2020)	133
3)	만성 간헐적 저산소에 의한 경동맥 의존적 교감 활성화 기반 메커니즘(2019-2020) …	134
4)	VWD 생물학에 관한 ZIMMERMAN 프로그램(2019-2024) ······	135
5)	만성 간헐성 저산소증에 의한 대칭성 활성화 의존성 내피 세포 활성화의 기저 메커니	· 구름
	(2019–2020)	136
6)	폐림프장의 병원성 메커니즘(2019-2023)	138
7)	염증 유발 칼슘 대동맥 판막 질환에 대한 세로토닌 수용체의 기여(2019-2023)	139
8)	염분 민감성 고혈압과 STRIATIN(2019-2022) ·····	· 140
9)	심장전도 시스템의 형태생식에 대한 전사적 조절(2019-2023)	· 142
10)) 심근경색에서 새로운 치료목표로서의 NA/K-ATPASE 수용체 기능(2019-2022) …	· 143
11) BK 채널 서브유닛에 의한 내생성 스테로이드 및 새로운 비스테로이드 아날로그:	의
	특정 감지를 통한 동맥 직경 조절(2019-2023)	· 144
12	2) 이상지질혈증 및 아테롬성 동맥경화 회귀 분석(2019-2020)	· 146
1-6.	NIAID ·····	· 147
1)	박테리아 병원체 생성요약을 제어하는 호스트 선천적 경로의 유전자 식별	
	(2019–2020)	· 147
2)	마우스와 인간의 NK세포에 의한 항체유발 면역반응 모델링(2019-2020)	148
3)	급성 방사선 증후군의 완화제로서의 GLYCOGEN SYNTHASE KINASE-3(GSK-	3)
	억제제(2019-2020) ····	· 149
4)	감염병 병원생성 요약에서 호스트망의 체계적 식별(2019-2020)	· 149
5)	GUT 항상성 및 염증에서 IGA-MICROBIOTA 상호 작용의 면역 대사(2019-2020) ··	151
1-7.	NINDS	152
1)	ARGINASE-1 및 INOS는 EAE 및 MS에서 CNS 골수 세포 하위 집합을 발현	
	(2019-2022)	152
2)	면역 요법에 대응하기 위해 신경 세포종 마이크로 환경의 방향 전환(2019-2024) …	153

54
56
57
58
60
60
<u> </u>
32
33
64
35
66
37
68
59
70
71
72
74
76
76
76
77
77 78
77 78 79
77 78 79 30
77 78 79 80 81
77 78 79 80 81 82
777 778 779 830 831 832
77 78 79 80 81 82 83 84
777 778 779 830 831 832

12)	유방암 휴면과 재발의 PAR-4 규제 및 기능(2016-2021) ·····	188
13)	PI3K/AKT 억제에 대한 암 세포 적응 반응의 역학 연구(2015-2020) ······	189
14)	췌장암의 전이성 운동 조사(2018-2023)	190
15)	대장암 촉진제 PAF 해부(2015-2020) ·····	191
16)	췌장암의 종양 하위 유형 및 치료 반응(2016-2021)	192
17)	(PQ4) 생체 내 암의 유전자 기능에 대한 정량적 및 다중 분석(2018-2023) ·········	193
18)	GLIOBLASTOMA에서 신경 아교 줄기 세포에 특화된 메커니즘의 식별 및 표적회	라
	(2018–2023)	194
19)	Drugggable Kras 표적에 대한 포괄적인 유전자 해부(2016-2021) ·····	195
20)	B 세포 림프종에서 간질 회로 표적화(2018-2025) ······	196
21)	치료 대상을 식별하기 위해 폐암에서 종양 간질 교차점 모델링(2015-2020)	197
22)	KRAS 돌연변이 폐암에서 유전형 특정 취약성을 발견하고 있습니까?(2018-2023) ······	198
23)	MACROH2A의 종양 억제 기능 해독(2017-2022) ······	199
24)	췌장암 치료를 위한 초음파 강화 약물 침투(2011-2022)	200
25)	면역 요법에서 단일 세포 게놈 전체의 골수성 반응 프로파일링(2018-2023)	201
26)	발암성 MICRORNA 클러스터의 MIR-17~92 제품군의 기능 조사(2010-2021) ·····	202
27)	종양 진행에서 RB의 다면적 역할 해체(2018-2023) ·····	203
28)	NORRIN과 FRIZZLED4에 의한 망막 혈관 발달의 조절(2008-2022) ·····	204
29)	흑색종에서 종양 미세 환경을 조절하는 KMT2D 및 비정상적인 향상제의 역할	
	(2018–2023)	205
30)	소아 횡문근육종의 비근원성 기원 정의(2017-2022)	206
31)	종양 발생에서 RAS ISOFORM 및 MUTATION 관련 역할 정의(2016-2021) ······	208
32)	망막 질환의 동물 모델에서 광수 신체 세포 퇴화의 메커니즘(1995-2019)	209
33)	암에서의 조직별 유전적 상호작용(2018-2023)	211
	MUC1-C 종양 단백질은 비소 세포 폐암에서 면역 파괴(2012-2022) ······	
35)	종양 전이에서 비 코딩 RNA 기능(2012-2023)	213
36)	PANCREATIC ACINAR에서 DUCTAL METAPLASIA에 대한 PD2/PAF1의 역	할
	(2017–2022)	214
37)	GLIOMAS의 생물학 및 치료에 사용되는 EVS(Extracellular Vesicles) 및 유전자	
	(1997–2022)	215
38)	KIDNEY TUMORIGENESIS에서 SETD2의 유전적 기능 상실 연구(2018-2023) ··	216
39)	돌연변이 KRAS/INK4A-유도 전신성 연골선 혈구 세포종에서 대사 재 프로그래	강의
	분자 메커니즘(2017-2022)	218
40)	MRI를 사용하여 GEMCITABINE에 대한 종양 반응의 비 침습적 예측(2017-2021) ····	219
41)	안드로겐 수용체 신호의 만성 억제는 줄기/전구 세포의 전이 분화에 의해 신경 내툰	-비]
	전립선암으로 이어집니다(2015-2020)	220
42)	AR CISTROME 및 ANTIANDROGEN 민감도 변조에서 ERG의 역할 정의	

	(2015–2020)	222
43)	MEDULLOBLOSTOMA에서 히스톤메틸전달효소 MLL4의 역할(2017-2022) ·······	223
44)	KRAS 돌연변이 폐암 재유발 시 상피-메신치말 전환의 역할(2018-2022) ······	224
45)	췌장암에서 무감각 매개 RNA 붕괴의 역할(2018-2023) ······	225
46)	종양에 대한 전신 RNA 전달(2015-2020)	226
47)	보안 감시 및 개입을 통한 2차 예방(2016-2021)	227
48)	LKB1 돌연변이 NSCLC 환자를 치료하기 위한 약리학적 접근법 개발(2015-2020) ····	228
49)	SCLC의 표현형 이질성 및 역학성(2018-2023)	229
50)	위장관 성형 종양의 분자 메커니즘(2017-2021)	231
51)	췌장암을 위한 펜 정량적 MRI 자원(2018-2023) ······	232
52)	비활성화 된 활성 신호의 맥락에서 PDA에 대한 IPMN의 개발 및 발전(2017-2022) ····	233
53)	휴면 암 세포의 생존 및 재발(2010-2022)	234
54)	췌장암 치료를 위한 산화 환원 취약성으로서 NAD KINASE의 전 임상 분석	
	(2016–2021)	235
55)	치료를 개선하기 위해 소아 뇌종양 미세 환경 해부(2015-2022)	236
56)	RAC1 췌장암 진행 및 종양의 GTPASE(2016-2021) ·····	238
57)	전이성 폐암에 의한 신진대사 적응을 통제하는 새로운 혈통 경로(2014-2020)	239
58)	GLIOBLASTOMA 전임상 약물 개발을 위한 CREDENTIALING MURINE MODELS	
	(2016–2020)	240
59)	인간 신경 아교의 분자적 특징을 재현하는 유전 공학 마우스를 사용하여 면역 치	료
	및 치료 표준을 통합하여 악성 신경 아교에서 치료 결과 향상(2018-2023)	241
60)	폐암을 위한 새로운 단백질 기반 치료법의 개발(2018-2023)	242
61)	K-RAS 합성 불법적 관계를 식별하기 위한 다각적 인 접근 방식(2015-2020) ······	243
62)	SCLC 대사의 분자 및 세포 메커니즘(2016-2020)	244
63)	유방암 재발의 최소 잔류 질환 및 기전(2010-2023)	245
64)	전신성 연골 선세포 양성 질환의 트롬빈 의존성 기전(2017-2022)	246
65)	SCLC 검출 및 방지를 위한 BCAT1 및 BRANCHED-CHAIN 아미노산 대사 대신	
	(2018–2023)	247
66)	EGFR T790M의 새로운 돌연변이 선택적 알로스테릭 억제제 발견 및 최적화	
	(2015–2020)	248
67)	폐암에서 HISTONE MODIFIER KDM2A의 역할(2017-2022) ······	250
68)	NRF2 구동 폐 편평 세포 암종에서 단백질 키나아제의 역할(2017-2022) ···············	251
69)	레티노 익산에 의한 종양 마이크로 환경에서 항원 존재 세포의 조절(2018-2023)	252
	췌장암에 대한 ROS 표적 요법(2015-2021) ·····	
	암에서 LKB1-AMPK 신호 경로를 해독하고 표적화(2017-2024)	
72)	흑색종에서 전사 공동 억제자 각질 복합체 표적화(2017-2022)	256
73)	생체 내 종양 유발 종양 발생 및 탈출(2003-2022)	257

74)	소 세포 폐암에 대한 ASCL1 및 NEUROD1 유전체 표적치료제 개발(2017-2022) ····	258
75)	암 면역 치료를 위한 마우스 모델의 번역 가능성 향상(2018-2020)	260
76)	정량적 이미징 바이오 마커를 위한 듀크 전임상 연구 리소스(2017-2022)	261
77)	췌장암 진행을 촉진하는 시알릴화 의존성 메커니즘(2018-2023)	262
78)	KRAS 기반 폐암에서 인슐린 수용체 기형물의 역할(2017-2022) ······	264
79)	신 해양 기술을 통한 조기 발견-나노 플라즈모닉을 이용한 난소암 외래 분석	
	(2018–2023)	265
80)	면역요법을 강화하기 위해 췌장암의 종양 미세환경 재프로그래밍(2012-2023)	266
81)	타이로신 인산염에 의한 신호전달(1999-2020)	268
82)	암 관련 섬유소는 고체 악성 종양에서 B 세포의 구성을 변경합니다(2016-2021) ··	269
83)	교모세포종에서 세포 자가 재생목표 메커니즘(2018-2023)	270
84)	NF2 돌연변이체 조직 종에서 CRL 억제제 MLN4924의 치료 효과(2016-2021)	272
85)	MAPK 억제를 통한 BIM 유도 APOPTOSIS 촉진 : 고급 흑색종의 치료 전략	
	(2015–2020)	
86)	MIR-200 MIRNA는 폐 선 혈구 세포종에서 종양 전이를 억제합니다(2009-2022) ······	275
87)		
	(2018–2023)	276
88)	유전자변형 핵심시설(기간미상)	277
89)	전립선암 전이성의 분자 메커니즘(2015-2020)	279
	암 진행 시 유전적 상호작용에 대한 생체내 연구를 위한 새로운 도구(2018-2023) …	
91)	NRF2-종속 대사 책임 조사(2018-2023) ·····	282
	DNA DSB 수리와 게놈 안정성 유지에서 BRCA1 인산화 역할(2017-2022) ·········	
	생쥐와 인간의 SCLC 시작과 검출의 분자 메커니즘(2018-2023)	
	암에서 크로마틴 및 정보 전달의 공간-시간적 조직(2015-2020)	
	영양소에 의한 MTOR 경로의 규제(2004-2024)	
	췌장암의 적응성 운동(2015-2020)	
97)	전이성 유방암에 돌파구를 마련하기 위해 면역 요법 기반 접근법과 통합된 새로운	
	표적 치료법 개발(2016-2023)	
	방광암 병원성 및 종양 진화 모델링(2018-2023)	
	PRB 매개 차별화에서 KDM5A의 역할(2016-2021) ····································	291
100.) LKB1 및 KEAP1 돌연변이의 상호 작용으로 폐 선상 구균 증의 성장 촉진	202
	(2016–2021)	
) INV(16) 백혈병에 대한 표적 소형 분자 억제제(2018-2023) ····································	
) 흑색종에서 식이 구리의 역할(2015-2020) ··································	
) 치명적인 신경내분비 전립선암 치료를 위한 RB1 결핍증 활용(2016-2021) ·········	
) 인간암에서 유전체 가소성의 구조와 기능(2017-2022) ··································	
105) 게놈 안정성, 암 및 노화에 대한 복제 라이선스(2008-2023)	298

106)	췌장암 치료를 위한 MR-HIFU 유도 약물 전달(2015-2020) ······ 299
107)	췌장 세포질 및 암의 동물 모델에서의 변환적 응용(2018-2022)300
108)	암 치료를 위한 STEAROYL-COA DESATURASE의 종양 표적 억제제(2018-2023) ···· 302
109)	췌장암 조기발견을 위한 순환식 바이오마커 및 영상촬영(2018-2023)304
110)	식별 가능한 종양 상태를 표적으로 삼는 약리학 및 면역 요법의 조합을 찾기 위한
	합리적 체계적 접근(2017-2022)
111)	ARNTL2 유도 프로 PRO-METASTATIC 비밀의 분자 해부(2016-2021) ········· 306
112)	췌장암 조기 발견을 위한 순환 바이오마커 컨소시엄(2016-2021)307
113)	유전 공학 마우스에서 진행된 전립선암의 전임상 분석(2013-2023) 308
114)	SPOP 돌연변이 전립선암에서 종양 발생 신호 전달 경로의 조정된 규제(2018-2022) ···· 309
115)	유방암의 미세 환경 정의(2016-2021)
116)	완전히 인간화된 스트로마를 가진 쥐의 암 모델 개발(2017-2020) 312
117)	마우스 종양 데이터에 대한 전자적 액세스(2000-2021)
118)	전립선 암 종양 형성 및 거동 저항에서 비정상적인 간핵 전사 회로의 역할 이해
	(2017–2022)
119)	P53 매개 종양 면역 감시(2015-2020)
120)	소 세포 폐암에서 화학 요법 저항성 메커니즘의 유전적 및 기능적 식별(2018-2023) 316
121)	심층 난소암 대사물학(2018-2023)
122)	단백질 상호 작용 네트워크 및 조합 화면을 사용하여 KRAS 유도 암을 표적화
	(2015–2020)
123)	BRG1 돌연변이 폐암의 종양기전 메커니즘(2018-2023) ························320
124)	췌장암 CA19.9의 프리타겟 임상 영상(2018-2023) ························321
125)	SCLC에서 신속한 화학방사능 저항에 대처하기 위한 인증 분자 대상에 대한 생물정보
	화학적 접근법(2018-2023)
	모노 바디 억제제로 RAS 매개 신호 메커니즘 탐색(2018-2022) ···············324
127)	유방 종양에서 CAVEOLAE 표적화(2015-2020)
128)	LKB1-매개 종양 억제의 분자 해부(2018-2023) ························326
129)	방광암의 분자 종양 형성(2013-2024)
130)	BARRETT의 ESOPHAGUS 및 ESOPHAGEAL ADENOCARCINOMA의 유전적
	결정 인자(2011-2022)
131)	폐암 치료를 위한 KRAS 중독 악용(2018-2023)
132)	종양 전이 중 사포화 이상, BCL-XL(2016-2021) ····································
133)	LKB1 종양 억제기의 대사 및 후생유전학 제어 기능(2018-2022) ··································
134)	갑상선 세포 성장의 분자 병리학(1989-2023)
135)	림프구에서 유도된 중성미자의 종양 메커니즘(2018-2023)334
136)	자기 마이크로포어 기반 진단 칩을 사용한 순환 종양 세포의 빠른 비편향 격리 및
	상황 내 RNA 분석(2017-2020)

137)	종양 내부 신호 경로는 간세포 암종에서 항 종양 면역을 제한(2018-2023)	336
138)	유방암 및 암 면역에서 PI3K-P110BETA/PTEN 신호의 분자 메커니즘 및 치료 독	적
	(2018–2019)	337
139)	소세포 폐암에서의 노치신호(2016-2020)	338
140)	췌장암의 MUC1 매개 종양 간질 대사 상호작용을 목표(2012-2024) ······	339
141)	췌장암의 컴퍼스 복합체 및 ENHANCER CHROMATIN 규제완화(2018-2023) ··	340
142)	뇌의 정상 및 신가소성 성장(2002-2020)	342
143)	악성 흑색종에서 RAC1 신호 경로 대상 지정(2018-2023)	343
144)	급성 골수성 백혈병의 이상 신호(2016-2021)	344
145)	유방암 진행 및 전이에서 새로운 LGR4 종양 발생 신호(2017-2022) ······	345
146)	피부에서 MTORC1 억제에 대한 저항의 분자 및 세포 메커니즘(2016-2021)	346
147)	편평암에서 섬유질 성장인자 수용체의 치료목표(2015-2020)	347
148)	P53의 야생형 및 돌연변이 형태의 역할 및 규정(2000-2022) ·····	348
149)	췌장암에서 CACHEXIA의 신진대사 기준 타겟팅(2016-2021) ·····	350
150)	자궁내막암의 차세대 마우스 모델(2017-2020)	351
151)	소세포 폐암에서 PARP1을 표적화하기 위한 치료 전략(2016-2021) ······	352
152)	신경 섬유종 1형에서 키놈 표적화(2009-2020)	353
153)	EGFR 돌연변이 폐암의 특정 부분에 대한 미충족 요구(2018-2023) ······	354
154)	암 치료의 엑소솜(2016-2021)	356
155)	MUC1-C는 면역 회피 및 면역 요법에 대한 저항력을 되돌리는 대상입니다.	
	(2018–2023)	357
156)	암 면역 요법의 내재적 면역 체크 포인트(2017-2022)	358
157)	악성 MESOTHELIOMA의 새로운 표적으로서의 RIP1/3 키나아제(2015-2020) ··	359
	골 전이의 진행 및 내분비 저항성에 있는 골 유전 틈새 생물학(2018-2023)	
159)	방광암 발생지 세포 조사(2015-2020)	362
160)	정밀한 T 세포 치료를 위한 새로운 전략(2016-2021)	363
	췌장암에서 면역 요법을 위한 표적 거시 세포(2016-2021)	
	난소암 항암치료 예방법(2015-2020)	
163)	피부 흑색종에서 기질자가 소화의 역할(2018-2023)	366
164)	PDAC 치료 개선을 위한 비만으로 인한 비정상적인 미세 환경 재설계(2017-2022) ···	368
165)	최적의 PDT를 위한 분자 반응 및 이미징 기반 조합 전략(1999-2020)	370
166)	폐암에서 CACHEXIA의 분자 메커니즘(2015-2020)	372
167)	삼중 음성 유방암에서 GDF11 종양 억제의 이종 손실(2018-2022)	373
	삼중 음성 유방암을 위한 표적 핵심 세포 나노 겔(2015-2020)	
169)	단백질 키나아제 C 매개 종양 진행의 효과(2016-2020)	375
170)	유전자형, 신호 및 치료 효과 사이의 관계를 이해하기 위한 시스템 접근법	
	(2017–2022)	377

171) 편견없는 약물 발견 접근 방식을 통한 화학 물질화 효율성 향상(2017-2022) …	··· 378
172) 악성 GLIOMAS에서 IDH의 역할 이해(2012-2023) ·······	379
173) AML에서 MIR-155의 생물학적 및 치료적 중요성(2015-2020)	380
174) 비소 세포 폐암에 대한 단백질 키나아제 치료 표적(2012-2022)	382
175) 간암과 위장암에서 TGF-베타 경로부재와 인식조절기 사이의 세포 상호작용	
(2018-2023)	383
176) 종양 전문성과 전이성의 맥락에서 야생형 KRAS의 역할(2015-2020)	384
177) KRAS 유도 폐암의 CYTOKINE 회로 표적화(2015-2020) ······	385
178) LKB1 돌연변이 종양의 새로운 치료 취약성 표적화(2018-2023) ·····	386
179) 약물 대체에 의한 항-EGFR 요법에 대한 내성 극복(2015-2020)	387
180) 신경 교종을 위한 표적 치료(2013-2024)	388
181) 유방암 진행에 있어서 GI/O-GPCR 신호의 역할(2017-2022)	390
182) 비흡연자의 폐암 : 에스트로겐의 역할과 대사(2018-2023)	391
183) LKB1 종양 억제기의 새로운 종양 발생 메커니즘(2016-2021) ·····	393
184) 생쥐에서 항-GBM 면역 반응을 유도하기 위해 온 대장균 HSV 벡터 무장	
(2018–2023)	394
185) LKB1-결핍 비소 세포 폐암에 대한 치료법(2016-2021) ·····	395
186) 식도 발암물질의 메커니즘(2003-2024)	397
187) 흑색종 발생과 진행을 연구하기 위한 유전자 조작 마우스 모델(기간미상)	398
188) NF1과 관련된 악성 종양의 분자, 세포 및 유전 분석(기간미상) ······	400
189) 암 및 HIV-AIDS 연구를 지원하는 기본 및 전임상 동물 모델(기간미상)	401
190) 인간 췌장암의 통합 분자 프로파일링(기간미상)	···· 402
191) 췌장암 진행 시 면역 및 염증 매개체의 역할(기간미상)	404
192) 유방암의 시작 및 진행에 대한 유전적 변형제(기간미상)	406
193) 돌연변이 EGFR 키나제 다운스트림 단백질 인산화(기간미상) ·····	···· 408
194) 폐암의 암 모델에서 치료법의 전임상 개발(기간미상)	410
195) 염색체 단백질 및 염색체 기능(기간미상)	···· 411
196) 백혈병으로 이어지는 협력적 경로(기간미상)	···· 414
197) 마우스 혈장 세포 종양에 대한 감수성의 유전학(기간미상)	···· 416
198) 난소 및 유방암 GEM-GDA 모델의 치료 평가(기간미상)	···· 418
199) SARCOMA의 기능적 유전학(기간미상)	···· 420
200) 췌장 아데노카르시노마 모델의 개발 및 전임상 적용(기간미상)	···· 421
201) 면역 체크포인트 억제제 반응 연구를 위한 전임상 마우스 모델(기간미상)	··· 424
202) 수용체 상호작용 및 알라민 효과에 관한 연구(기간미상)	···· 426
203) 사이토카인 신호(SOCS) 분자의 억제자의 면역 조절 역할(기간미상)	···· 428
204) 새로운 정보를 제공하는 전임상 동물 모델 개발-CAPR 인프라(기간미상)	430
2-2. NIDDK	···· 433

	1) 전립선 상피 혈통 계층 구조(2011-2020)	433
	2) 달팽이관 증폭기의 실험적 연구(2001-2022)	434
	3) 조혈 및 골수 부전 장애에서 2'-O-메틸화의 NPM1 조절(2017-2020)	435
	4) 섬유성 간질환에서 매트릭스 강성과 간세포 기계전도의 역할(2017-2022)	436
	5) DRUGGABLE GPCR-OME 조명(2017-2023) ······	437
	6) 부드러운 근육 수축성의 신경선 2축(2016-2021)	438
	7) GABAERGIC 및 NON-GABAERGIC POMC 신경(2012-2022) ·······	439
	8) CA2+의존성 외세포 분비를 촉진하는 새로운 의미의 개발(2016-2020) ········	440
	9) 골수의 신경회로 평가(2017-2020)	442
	10) 렙틴과 멜라노코틴 시스템의 상호 작용(2018-2022)	443
	11) 간섬유화에서 멸균성 염증 및 화농성 세포 사망(2017-2022)	444
	12) 담즙 분할 : 비만 치료의 간단하고 효과적인 방법(2015-2020)	445
	13) 비만으로 인한 인슐린 저항성의 내피성 기반(2016-2020)	446
	14) 신장발달을 위한 후생유전학적 규제(2006-2021)	447
	15) 대사 및 에너지 소비에서 RAPAMYCIN 경로의 기계적 목표(2013-2024)	448
	16) GASTRIN의 전사적 통제(1993-2022) ······	450
2-3	8. NIAMS ······	452
	1) 체내 골세포 단백질 분비물 발견: 새로운 요소와 기능 확인(2018-2020)	452
	2) 피부 질환 연구를 지원하고 번역하기 위한 펜 리소스 기반 센터(2016-2021)	453
	3) 포유류 피부에서 MICRORNA 매개 조절(2010-2021)	455
	4) 모낭 줄기 세포 항상성 및 종양 형성의 대사 조절(2018-2023)	456
	5) CAV1.1 관련 저칼륨주기에 대한 질병 병리 발생 및 변형(2012-2022) ··················	456
	6) 골격대사 및 기계전도의 LRP4 신호(2005-2022) ······	458
	7) 피부 염증의 KALLIKREIN-PAR 상호 작용(2018-2023) ······	459
	8) 거대 선천성 멜라노사이트 네비이의 치료를 위한 전임상 모델 및 치료 전략(2017-2022) …	460
	9) AUTOPHAGY 관련 SLE 위험 LOCI의 횡단 미세 매핑 및 기능 분석(2018-2023) ·····	462
	10) 표적 MRNA 발현을 형성하는 데 있어 풍부한 요소 결합 단백질의 역할(기간미상) ·····	463
2	7–4. NIDCR ·····	465
	1) 아데노이드 세포암 발생 및 종양 유지의 메커니즘(2018-2022)	465
	2) 구강 종양 형성 및 치료에 대한 반응 동안의 바이러스 복제 경로(2018-2022)	466
	3) 치아 뿌리 형성에서 OSX-WNT-B-CATENIN 신호 전달 경로의 BIPHASIC 역할	
	(2015–2020)	468
	4) 침전종양 상피-망막 전이 메커니즘(2016-2021)	469
	5) 상아질 발생의 DSPP 신호(2009-2024) ······	470
	6) 머리 및 목암에서 노치 기능 장애의 메커니즘 및 결과(2015-2019)	
	7) 근육 및 전신 T 세포 면역 및 내성에 대한 TGF- 베타 조절(기간미상)	472
	8) 신경 기능 및 통증 신호에서 CDK5의 분자 역할(기간미상)	474

2-5. NHLBI	476
1) 동맥 경화증의 C-KIT(2016-2020) ······	476
2) 페길 레이 티드 치료법의 장기간 순환 및 효율성을 복원하기 위한 안티 페그 내성 =	구복
(2018–2022)	. 477
3) MUC5B에 의한 건강 및 질병 시 폐 대식세포 프로그래밍 메커니즘(2016-2020) …	478
4) BIRT-HOGG-DUBE 증후군의 폐 질환의 분자 메커니즘(2018-2022) ·······	479
5) 노화의 섬유소 섬유화를 위한 분자 메커니즘(2015-2020)	· 481
6) 동맥 경화증에서 고혈당 및 MICRORNA의 염증 조절 장애(2016-2020)	· 482
7) ENAC 규제와 혈압 항상성에서 그 역할(1996-2023) ·····	· 484
8) 남아시아 자손 집단에서 과잉 영양성 심장 병증의 분자 메커니즘(2016-2020)	· 485
9) 심장 마비의 심장 림프절(2016-2021)	· 486
10) 유전성 혈액 질환에서 치료법 발견을 위한 줄기 세포(2016-2023)	· 487
11) 중성미자 산화효소의 선택적 삭제 및 ASPERGILLUS FUMIGATUS에 대한 선천	
반응(2017-2021)	· 488
12) 혈관 리모델링 시 부드러운 근육 생성기(2016-2020)	
13) 관상동맥 혈류 조절(2018-2023)	
14) 혈관 색조 조절의 TRP 채널(2009-2021)	
15) 손상된 폐의 세포 기반 치료를 위한 새로운 파라크린 메커니즘(2017-2021)	• 493
16) 인간 HSC 자가 재생의 후생유전학, 전사 및 미환경 결정요인(2018-2022) ·········	
17) WNT/BETACENTIN 신호 및 심장 이온 채널(2015-2020) ······	
18) FHFS 및 심장 전기 생리학(2018-2022) ······	
19) 동맥 분화의 전사적 조절(2017-2021)	
20) 병리학적 계산에서 BMP2를 억제하는 유전자 조절 메커니즘(2017-2020) ···········	
21) 내막에서 중막으로의 전이 및 죽상 동맥 경화증(2017-2020)	
22) 콜레스테롤 대사의 분자 기초(1997-2022)	
2–6. NIAID	
1) 조직 염증 예방을 위한 선천성 TREG의 기여(2016-2021) ····································	
2) 뎅기 질환의 항체 의존적 강화 메커니즘(2018-2023)	
3) 새로운 백신 접근법을 사용한 HIV-1 특정 B 세포 전구체의 활성화(2018-2023) ···	• 505
4) Versican 결핍이 인플루엔자 바이러스에 대한 선천적 면역 반응에 미치는 영향	
(2017–2022)	
5) HIV-1에 대한 광범위한 중화 항체를 유도하기 위한 면역 전략(2018-2019) ··········	
6) 살균 및 부상 염증에서 매크로파지 산화 환원 상태(2017-2022)	
7) 방사선에 의한 혈관 내 손상에 대한 완화제로서의 THROMBOPOIETIN MIMETI	
(TPOM) 개발(2017-2022) ··································	
8) 림프구 분화와 기능 프로그래밍에서 비코딩 RNAS의 역할(기간미상)	
9) 포유류에서 유전자 발현 프로그래밍에서 RNA 결합 단백질의 역할(기간미상)	•512

	10) 세균성 및 기생충 질환에서 면역 병리학의 규제(기간미상)	514
2-	-7. NINDS	
	1) 신경구 세포종에서 BET-BROMODOMAINS 표적화(2015-2020) ··································	516
	2) 교모세포종의 대상성 EPA2(2016-2020) ······	517
	3) 악성 뇌종양의 신경면역학 : 선천적 메커니즘(2016-2021)	518
	4) 신경섬유종증-1 신경계 질환 이질성에 대한 기계론적 근거 정의(2016-2024)	519
	5) GLIOBLASTOMA에서 종양 관련 매크로파지의 역할(2017-2022) ······	520
	6) 조직 및 장기 크기 제어의 공간 역학(2015-2020)	522
	7) 신경 발달 및 질병에 있어서 히스톤 유비쿼터스화의 역할(2017-2022)	523
	8) 형광 분자 단층 촬영으로 기능 연결 매핑(2017-2022)	524
	9) 시냅스 가소성 및 메모리의 변환 제어(2005-2023)	525
	10) 아밀로이드 베타 유도 시냅스 기능 장애의 포스트 시냅스 키나아제/인산염 네트워	리크
	(2018–2023)	526
	11) 손 내 경막 단백질 분해 및 회로 기능 장애(2018-2023)	527
	12) 그룹 3 MEDULLOBLOSTOMA의 치명적인 전이물 예방 및 치료(2018-2023) ·····	528
	13) 신경 아교 미세 환경의 면역 억제성 골수 세포 : 신호 전달 메커니즘 및 새로운 치료	豆
	전략(2015-2022) ·····	530
2-	-8. 기타 기관(OD, NEI, NIA, NIEHS, NIAAA, NIBIB, NIDA, NIOSH, NHGRI, NIGN	IS,
	NIMH, NICHD) ·····	532
	1) (OD)돌연변이 생쥐를 특성화하고 유지하기 위한 캐롤라이나 센터(1999-2020) ······	532
	2) (OD)미주리 대학의 돌연변이 마우스 자원 및 연구 센터(2000-2020) ··································	533
	3) (OD)광학 나노센서가 말초신경계 내 신경전달물질 방출을 감지함(2017-2020) ······	534
	4) (OD)국립 GNOTOBIOTIC RODENT 자원 센터(2003-2024) ······	535
	5) (OD)전 임상 면역 요법을 가속화하기 위한 단일 세포 마우스 단백질 시스템	
	(2016–2020)	536
	6) (OD)잭슨 연구소의 돌연변이 마우스 자원 및 연구 센터(2010-2020) ··································	537
	7) (OD)돌연변이 마우스 자원 및 연구 센터를 위한 정보학, 조정 및 서비스 센터	
	(2011–2021)	538
	8) (OD)정밀 질환 모델링을 위한 MSKCC 파일럿 센터(2015-2020)	539
	9) (NEI)렌즈 세포 간 통신 연결 및 백내장(2000-2020) ······	540
	10) (NEI)MACULAR CAROTENOIDS의 생화학 및 약리학(1997-2022) ······	541
	11) (NEI)시각 피질 회로에서 천체-신경 상호 작용(2018-2022) ······	542
	12) (NEI)인간의 망막 영상 및 기능 테스트를 위한 2광자 안과(2015-2020)	543
	13) (NEI)안구 고혈압 및 녹내장 치료를 위한 ANGIOPOIETIN-TIE2 경로의 활성화	
	(2016–2020)	544
	14) (NEI)신경섬유전증 타입 1의 뮤린 모델에서 망막강변세포 변성의 기능 및 해부학	·적
	특성(기간미상)	545

15)	(NIA)노화의 보존 경로를 목표로 하는 유전적 변이 기반 약물 발견(2017-2022) ··	546
16)	(NIA)연령 관련 인지력 저하 칼슘 가설 테스트(2016-2021) ·····	547
17)	(NIA)나이에 따른 근세포 재분화 및 심장 기능 장애(2018-2023) ······	548
18)	(NIA)금속 산화물 나노 물질 및 신경 생성의 비뇨로 산화(2017-2021) ······	549
19)	(NIA)노령 인구의 알파-시뉴클레오페라티스의 신경면역반응과 치료법(기간미상) ·····	550
20)	(NIEHS)미토콘드리아 기능을 위한 에너지 저장장치로서의 히스톤 테일(2015-2020) ····	553
21)	(NIEHS)RAD51C 포크 보호 및 환경 암 발생 메커니즘(2018-2023) ······	554
22)	(NIEHS)자외선으로 유도된 피부암의 초기 단계를 규제하는 메커니즘(2018-2023) ····	556
23)	(NIEHS)번식과 임신의 환경 신호(기간미상) ·····	557
24)	(NIAAA)GABAAR 유전자 대상 마우스의 에탄올 메커니즘(2015-2020) ······	560
25)	(NIAAA)알코올 작용에서 비코딩 RNA의 역할(2011-2022) ······	561
26)	(NIAAA)이식 후 재발성 알코올성 간 질환의 분자 메커니즘(2017-2022) ············	562
27)	(NIAAA)알코올 유도 간 및 GI 세포 증식에서 베타 스펙트럼 및 SMAD의 역할	
	(2004–2023)	563
28)	(NIBIB)포피린-인산지질 지포솜을 이용한 화학요법 적색광 투과(2013-2022) ······	564
/		
29)	(NIBIB)장 핵산의 전달을 가능하게 하는 나노 입자 내 분자 상호 작용 정의	
\	(NIBIB)장 핵산의 전달을 가능하게 하는 나노 입자 내 분자 상호 작용 정의 (2018-2022)	565
\	(2018–2022)	
29)	(2018-2022) ··································	566
29)30)31)	(2018-2022) ··································	566
29)30)31)	(2018-2022) (NIBIB)정밀의학 분자영상제 자원(2017-2022) (NIDA)CRMP2, NAV1.7 나트륨 채널 및 만성 통증(2017-2022)	566 567
29)30)31)	(2018-2022) ··································	566 567 568
29) 30) 31) 32)	(2018-2022) ··································	566 567 568 570
29) 30) 31) 32)	(2018-2022) ··································	566567568570571
29) 30) 31) 32) 33) 34) 35)	(2018-2022) (NIBIB)정밀의학 분자영상제 자원(2017-2022) (NIDA)CRMP2, NAV1.7 나트륨 채널 및 만성 통증(2017-2022) (NIDA)보상 및 동기 부여의 뇌 영역 및 세포 유형 특정 원추형 분자 메커니즘을 조사하기 위한 새로운 마우스 도구 생성(2016-2021) (NIOSH)WTC 분진이 면역기능 및 전립선암 촉진에 미치는 영향(2016-2021) (NHGRI) 배아줄기세포 및 유전자이전 마우스 코어(기간미상)	566567568570571572
29) 30) 31) 32) 33) 34) 35) 36)	(2018-2022) (NIBIB)정밀의학 분자영상제 자원(2017-2022) (NIDA)CRMP2, NAV1.7 나트륨 채널 및 만성 통증(2017-2022) (NIDA)보상 및 동기 부여의 뇌 영역 및 세포 유형 특정 원추형 분자 메커니즘을 조사하기 위한 새로운 마우스 도구 생성(2016-2021) (NIOSH)WTC 분진이 면역기능 및 전립선암 촉진에 미치는 영향(2016-2021) (NHGRI) 배아줄기세포 및 유전자이전 마우스 코어(기간미상) (NIGMS)단일 세포에서 세포 노쇠의 역학(2017-2020)	566 567 568 570 571 572 573
29) 30) 31) 32) 33) 34) 35) 36) 37)	(2018-2022)	566 567 568 570 571 572 573 574
29) 30) 31) 32) 33) 34) 35) 36) 37) 38)	(2018-2022) (NIBIB)정밀의학 분자영상제 자원(2017-2022) (NIDA)CRMP2, NAV1.7 나트륨 채널 및 만성 통증(2017-2022) (NIDA)보상 및 동기 부여의 뇌 영역 및 세포 유형 특정 원추형 분자 메커니즘을 조사하기 위한 새로운 마우스 도구 생성(2016-2021) (NIOSH)WTC 분진이 면역기능 및 전립선암 촉진에 미치는 영향(2016-2021) (NHGRI) 배아줄기세포 및 유전자이전 마우스 코어(기간미상) (NIGMS)단일 세포에서 세포 노쇠의 역학(2017-2020) (NIGMS)질병과 관련된 아미노산 합성체의 전이적 역할(2010-2020) (NIMH)STRIOSOMAL SYSTEM의 기능적 및 해부학적 특성(2000-2022)	566 567 568 570 571 572 573 574 575
29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39)	(2018-2022) (NIBIB)정밀의학 분자영상제 자원(2017-2022) (NIDA)CRMP2, NAV1.7 나트륨 채널 및 만성 통증(2017-2022) (NIDA)보상 및 동기 부여의 뇌 영역 및 세포 유형 특정 원추형 분자 메커니즘을 조사하기 위한 새로운 마우스 도구 생성(2016-2021) (NIOSH)WTC 분진이 면역기능 및 전립선암 촉진에 미치는 영향(2016-2021) (NHGRI) 배아줄기세포 및 유전자이전 마우스 코어(기간미상) (NIGMS)단일 세포에서 세포 노쇠의 역학(2017-2020) (NIGMS)질병과 관련된 아미노산 합성체의 전이적 역할(2010-2020) (NIMH)STRIOSOMAL SYSTEM의 기능적 및 해부학적 특성(2000-2022) (NIMH)정신분열증과 조울증 장애의 새로운 패러다임 탐색(2016-2021)	566 567 568 570 571 572 573 574 575 577

│. 총론	<u>2</u>	23
<翌1-1>	조사항목 개요와 예시	23
<翌1-2>	Federal RePORTER에 등재되는 기관 목록 ·····	24
<班1-3>	미국 중점 R&D 분야 전략	26
	일본 중점 R&D 분야 전략	
	중국 중점 R&D 분야 전략 ·····	
<翌1-6>	독일 중점 R&D 분야 전략	27
<班1-7>	2020년 국가중점연구개발계획 13대 중점전문프로젝트 개요	28
<班1-8>	2020 회계연도 R&D 우선 분야 및 주요 내용 ·····	29
<翌1-9>	2021 회계연도 R&D 우선 분야 및 주요 내용 ·····	31
<翌1-10>	> 2011년-2018년 지원금 출처별 대학 R&D 지원금(단위 : 백만 달러) ·············	36
<翌1-11>	› '16년-'18년 기준 모든 영역에서 가장 높은 R&D 지출을 기록한 상위 대학 (37
<翌1-12>	› 상위 15개국 과학공학 분야 학술 논문 실적(2008-2018년) ·····················	38
<班1-13>	› 사이버 보안 6대 중점 분야별 사이버보안 구성요소 관련성	41
<班1-14>	> 미국 양자과학 네트워크 구축을 위한 장단기 목표	42
<班1-15>	› 미국 에너지 혁신 관련 법안····································	43
Ⅱ. 미국	유전자 변형 마우스 기술관련 연구개발 테마	Q

1	本星 .	23
		2020-2021 회계연도 R&D 우선 실천사항(priority practices) 변화·비교 33
		2020-2021 회계연도 R&D 우선 분야 변화·비교 ···································
		1972년-2018년 지원금 출처별 대학 R&D 지원금(단위 : 연도, 십억 달러) ······· 36
		'18년 지원금 출처별 R&D 지출(단위 : 십억 달러) ························· 37
<ユ	림1-5>	분야별 비교
<ユ	림1-6>	국제 공동연구 및 자국 내 연구 분포(2018년)
<ユ	림1-7>	사이버 보안 4대 구성요소
П.	미국 유	우전자 변형 마우스 기술관련 연구개발 테마49