목 차

Ⅰ. 수	소 연료전지와 연료전지 발전산업 개관41
1. 수소	· 연료전지 개요 ············41
1-1.	수소에너지의 이용41
1)	수소의 일반적 특징41
2)	수소의 에너지 특성
3)	수소의 효율적인 이용
	(1) 다양한 자원에서 얻어지는 수소
	(2) Fuel Cells Applications의 사용
	(3) 에너지 담체로 이용49
1-2.	연료전지의 작동 원리
1)	연료전지 단위 Cell & Stack51
	(1) 연료전지 단위 Cell ······51
	(2) 연료전지 Stack ·······53
2)	연료전지 시스템55
	(1) System의 구성 및 작동 ······55
	(2) System 효율성 제고 방안56
1-3.	연료전지의 구성 및 특징
1)	연료전지의 구성
2)	연료전지의 특징 및 장점59
3)	연료전지의 다양한 유용성62
	연료전지 산업의 특성64
1)	융합산업으로서의 연료전지 산업64
2)	고정형/발전용 연료전지 산업66
3)	수소연료전지차 관련 산업67
2. 연료	.전지의 분류69
2-1.	기술별 분류69
1)	PEMFC(Proton Exchange Membrane Fuel Cell)
	DMFC(Direct Methanol Fuel Cell)
3)	SOFC(Solid Oxide Fuel Cell)
4)	AFC(Alkaline Fuel Cell)

5)	MCFC(Molten Carbonate Fuel Cell)	• 77
	PAFC(Phosphoric Acid Fuel Cell)	
	용도별 분류	
1)	Applications Category ·····	. 80
	수송용(Transportation) 연료전지 ·····	
	휴대용(Portable) 연료전지 ····	
	발전용(고정형, Stationary) 연료전지 ·····	
	연료전지 Type별 특성 및 시장분석	
	전해질에 의한 연료전지의 분류	
	Fuel Cell Type별 작동 특징 ····	
3)	Fuel Cell Type 별 시장분석 ·····	· 87
3. 발전	용 연료전지 개요	. 88
3-1.	발전용 연료전지의 주요 이점	. 88
3-2.	발전용 연료전지 시장 현황 및 전망	• 92
1)	발전용 연료전지 시장 현황	• 92
	발전용 연료전지 상업화 시나리오	
3-3.	발전용 연료전지 System ·····	• 97
1)	주택/건물용 중소형 연료전지 mCHP System	. 98
((1) 소형 열병합발전시스템(mCHP) 개요 ·····	. 98
((2) mCHP 경제성 분석 ·····	. 99
2)	대형건물용/발전사업용 중대형 연료전지 System	102
4. 연료	전지의 기술적 장애	106
4-1.	연료전지의 내구도(Durability) 문제 ······	106
1)	자동차용 연료전지의 내구도	106
2)	발전용 연료전지의 내구도	107
4-2.	연료전지의 가격(Cost) 문제	108
4-3.	연료전지의 성능 문제	109
1)	Cell Issues	109
2)	Stack 물관리 기술	110
3)	System 열/물/Air 관리 기술 ······	110
4)	System 시동/정지시간 & Energy/Transient Operation	111

□. 해외 주요국 발전용 연료전지 관련 정책/실증/산업 동향	115
1. 미국 발전용 연료전지 관련 정책/실증/산업 동향	115
1-1. 발전용 연료전지 관련 RD&D 지원	115
1) US DOE(에너지부)의 관련 예산	115
2) 각 주별 R&D 지원 Funding	119
(1) FY13-FY15 Funding by State(FCTO) ·····	119
(2) 최근의 DOE FCTO FUNDING AWARDS	120
(3) 최근의 DOE NETL Funding AWARDS	123
3) US DOE SBIR Program ·····	125
4) FY 2015 DOE 지원 RD&D Project ·····	126
1-2. 각 州별 발전용 연료전지 설치현황 및 산업동향	141
1) 관련 규제 해석 및 주별 현황 요약	142
(1) 에너지 관련 규제 조항의 해석	142
(2) 미국 내 전체 동향과 주별 현황 요약	142
2) 미국의 연료전지 산업계 동향	
(1) 연료전지에 대한 인식의 성장	
(2) 연료전지의 Business Opportunity ·····	
(3) 연료전지 산업계를 지원하는 주정부의 이득	
(4) 산업계를 지원하는 State Universities & Laboratories의 R&D	
(5) 해외 투자와 사업 기회	
3) 연료전지 산업 Leading 3 States 현황 ······	
(1) California 州 ······	
(2) Connecticut 州 ······	
(3) New York 州 ······	
4) 연료전지 산업 Rising 6 States ······	
(1) Colorado 州 ······	
(2) Hawaii 州 ······	
(3) Massachusetts 州 ··································	
(4) New Jersey 州 ···································	
(5) Ohio 州 ···································	
(6) Pennsylvania 州 ···································	
1-3. NEESC의 2015 수소/연료전지 발전 Plans ······	
1) Connecticut 州 ···································	
(1) 연료전지 산업계 현황 ······	
(2) 연료전지 관련 지원정책 ······	
(3) 고정형 연료전지 설치 Plan	178

2) Maine 州 ······	180
(1) 연료전지 산업계 현황	180
(2) 연료전지 관련 지원정책	181
(3) 고정형 연료전지 설치 Plan	182
3) Massachusetts 州 ······	184
(1) 연료전지 산업계 현황	184
(2) 연료전지 관련 지원정책	185
(3) 고정형 연료전지 설치 Plan	186
4) New Hampshire 州 ······	188
(1) 연료전지 산업계 현황	188
(2) 연료전지 관련 지원정책	189
(3) 고정형 연료전지 설치 Plan	190
5) New Jersey 州 ······	192
(1) 연료전지 산업계 현황	192
(2) 연료전지 관련 지원정책	193
(3) 고정형 연료전지 설치 Plan	194
6) New York 州 ······	196
(1) 연료전지 산업계 현황	196
(2) 연료전지 관련 지원정책	197
(3) 고정형 연료전지 설치 Plan	198
7) Rhode Island 州 ······	
(1) 연료전지 산업계 현황	
(2) 연료전지 관련 지원정책	201
(3) 고정형 연료전지 설치 Plan	
8) Vermont 州 ·····	204
(1) 연료전지 산업계 현황	204
(2) 연료전지 관련 지원정책	205
(3) 고정형 연료전지 설치 Plan	
1-4. 미국의 발전용 연료전지 설치 현황	209
1) 개요 ····	
2) 설치/계획 현황	209
(1) 미국 California주 현황(2016.03.) ······	209
(2) 미국 Connecticut주 현황(2016.03.) ·····	······ 247
(3) 미국 New Jersey주 현황(2016.03.) ·····	······ 257
(4) 미국 New York주 현황(2016.03.) ·····	
(5) 미국 기타 州별 현황(2016.03.)	
1-5. 미국 DOE의 발전용 연료전지 RD&D 동향	273

1) DOE의 Technical Targets ·····	· 273
(1) 수소 사용 Backup Power Systems (1-10kWe) ······	· 273
(2) 천연가스 사용 CHP/DG 연료전지 시스템	· 274
(3) Portable & APU용 연료전지 System ·····	276
2) DOE의 R&D 방향 및 Milestones ·····	
(1) DOE의 R&D 방향	278
(2) DOE의 R&D Milestones ······	· 281
2. 유럽 발전용 연료전지 관련 정책/실증/산업 동향	· 285
2-1. FCH JU의 연료전지 상업화연구 & 유럽시장 전망	· 285
1) 발전용 연료전지 상업화 연구 배경	· 285
(1) 상업화를 위한 공동 연구보고서	· 285
(2) 진화된 유럽의 Energy Goal & Target ······	286
2) 유럽 시장의 기초적 환경	287
(1) 분석 대상 CHP 기술 ·····	287
(2) 분석 대상 시장	287
(3) 분석 대상 Energy Price ······	288
(4) 상업화 방해요소 및 극복전략	290
(5) 발전용 연료전지 수익 모델	· 292
3) 유럽 시장 분야별 분석	· 293
(1) Main Market Segments와 시장 규모 ·····	
(2) 주거용 건물(1~2가구) 시장 현황과 전망	
(3) 상업용(Apart. & 비주거용) 건물 시장 현황과 전망	298
(4) 산업시설 시장 현황과 전망	
4) 유럽 시장의 발전용 연료전지 경쟁력 분석	
(1) 주택용 연료전지 micro-CHP (1 kWel) 분석	· 311
(2) 소규모 거주건물용 연료전지 mini-CHP (5 kWel) 분석	· 313
(3) 상업적 건물용 연료전지 CHP (>50 kWel) 분석	· 316
(4) 산업용 연료전지 Prime Power (1,000 kWel) 분석 ·····	
(5) 산업용 연료전지 CHP-ng (1,400 kWel) 분석 ·····	
(6) 산업용 연료전지 CHP-bg (400 kWel) 분석 ·····	
5) 발전용 연료전지의 유럽시장 진입전략 및 전망	
(1) 주택용 연료전지 mCHP 분야	
(2) 상업적 건물용 연료전지 CHP 분야	
(3) 산업시설용 연료전지 CHP 분야	
(4) 발전용 연료전지 Europe Market Outlook ······	
2-2. 유럽내외 발전용 연료전지 지원정책	· 332

1) 지원정책의 필요성과 정책 Category	332
(1) 상업화를 위한 지원정책의 필요성	332
(2) 지원정책의 Type별 Category 구분 ······	333
2) 유럽의 발전용 연료전지 상업화 지원정책	333
(1) 유럽 전체 대상 지원정책	334
(2) 독일의 국가적 지원정책	334
(3) 영국의 국가적 지원정책	336
(4) 이탈리아의 국가적 지원정책	338
2-3. ene.field Project ·····	339
1) Project 개요 및 목표 ·····	339
(1) Project 개요 및 경과 ·····	339
(2) Project의 목표 ·····	340
2) Project Partners	340
(1) 분야별 Project Partners ·····	340
(2) Member States & 국가별 FC micro-CHP Providers	341
3) 적용된 FC micro-CHP 기술 ·····	342
(1) FC micro-CHP 제원 ·····	······· 342
(2) 표준 FC micro-CHP의 설치 ·····	······ 342
4) Project에서 수집된 Data ·····	
(1) 설치 전 Surveys-대상 세대 구성 정보	
(2) 설치 전 Surveys - Attitudes ······	
(3) 설치자 (Installer) Survey ·····	
2-4. 유럽 FCH 2 JU의 발전용 연료전지 RD&D 동향	
1) Multi-Annual Work Plan (MAWP) 2014-2020 ·····	
(1) Technology Readiness Levels (TRL)	
(2) CHP와 발전용 고정형 Fuel cell systems R&D Targets	350
(3) 수소생산 분야 R&D Targets ·····	351
(4) 수소 저장/보급/Handling ·····	
2) Programme Review Report (PRR) 2015	
(1) PRR 2015 개요 ·····	
(2) PRR 2015 예산 분배 분석 ······	
(3) 2015년 AWP/MAWP 중요 영역별 분석 ·····	
3) Annual Work Plan (AWP) 2016 ······	
(1) AWP 2016 배경 및 구성 ··································	
(2) AWP 2016 실행계획 ······	
(3) AWP 2016 Budget	
(4) AWP 2016 주요 내용 ·····	367

3. 일본 발전용 연료전지 관련 정책/실증/산업 동향	370
3-1. 수소사회 실현을 위한 연료전지보급 확대전략	370
1) 수소사회 실현을 위한 3단계 로드맵	370
(1) 로드맵의 발전용 연료전지 RD&D 목표	370
(2) 로드맵에서 실행단계로 진입	371
(3) 정부 주도의 수소 기반 기술개발과 실증사업	372
2) 발전용 연료전지보급 확대 배경과 노력	374
(1) 주택용 연료전지보급 확대 배경	374
(2) 발전용 연료전지보급 확대 노력	376
3) 발전용 연료전지 보급 확대를 위한 주요 과제	377
(1) 주택용 연료전지의 경제성 향상	377
(2) 주택용 연료전지의 사용자 확대	382
(3) 주택용 연료전지의 해외 전개	384
(4) 업무/산업용 연료전지의 보급 확대	
(5) 순수소형 발전용 연료전지의 이점 활용	388
3-2. Kitakyushu(北九州) 수소타운 실증 Project ······	
1) Project 개요 ·····	
2) Project의 목적 ·····	
3) Project 내용 ·····	
3-3. Ene-Farm S를 활용한 e-Prosumer 사업 ······	392
Ⅲ. 해외 연료전지 관련 사업 참여업체 사업전략 ⋯⋯⋯⋯⋯	395
1. 해외 연료전지 관련 주요업체	
1-1. 북미의 발전용 연료전지 주요업체	
1) Altergy Systems (PEMFC, USA) ······	395
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
2) Atrex Energy, Inc. (SOFC, USA) ······	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
3) Ballard Power Systems (PEMFC, Canada)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	402

(3) 연료전지 관련 주요동향	··· 407
4) Bloom Energy (SOFC, USA) ·····	··· 408
(1) 일반 현황	
(2) 연료전지 기술 및 제품	··· 408
(3) 연료전지 관련 주요동향	··· 412
5) Dana Holding Corp. (FC부품, USA) ······	··· 414
(1) 일반 현황	··· 414
(2) 연료전지 기술 및 제품	··· 414
(3) 연료전지 관련 주요동향	··· 418
6) Doosan FuelCell America Inc. (PAFC, USA) ·····	··· 418
(1) 일반 현황	
(2) 연료전지 기술 및 제품	··· 419
7) ElectroChem, Inc. (PEMFC, USA) ·····	··· 419
(1) 일반 현황	
(2) 연료전지 기술 및 제품	··· 420
(3) 연료전지 관련 주요동향	··· 424
8) First Element Energy LLC (PEMFC, USA) ·····	··· 425
(1) 일반 현황	
(2) 연료전지 기술 및 제품	··· 426
(3) 연료전지 관련 주요동향	··· 427
9) FuelCell Energy Inc. (MCFC, USA) ······	··· 428
(1) 일반 현황	
(2) 연료전지 기술	··· 429
(3) 연료전지 제품	434
(4) 연료전지 관련 주요동향	··· 437
10) GEI Global Energy Corporation, Inc. (HT PEMFC, USA)	440
(1) 일반 현황	
(2) 연료전지 기술 및 제품	440
(3) 연료전지 관련 주요동향	444
11) Hydrogenics (PEMFC, Canada) ·····	··· 445
(1) 일반 현황	··· 445
(2) 연료전지 기술 및 제품	··· 445
(3) 연료전지 관련 주요동향	··· 456
12) LG Fuel Cell Systems Inc. (SOFC, USA)	··· 457
(1) 일반 현황	··· 457
(2) 연료전지 기술 및 제품	··· 457
(3) 연료전지 관련 주요동향	··· 459

13) Materials & Systems Research, Inc. (SOFC, USA)	460
(1) 일반 현황	
(2) 연료전지 기술 및 제품	460
(3) 연료전지 관련 주요동향	····· 462
14) Oorja Fuel Cells (DMFC, USA) ·····	463
(1) 일반 현황	463
(2) 연료전지 기술 및 제품	464
(3) 연료전지 관련 주요동향	468
15) Plug Power Inc.(PEMFC, USA) ······	468
(1) 일반 현황	468
(2) 연료전지 기술 및 제품	469
(3) 연료전지 관련동향	····· 473
16) Redox Power Systems, LLC. (SOFC, USA)	473
(1) 일반 현황	473
(2) 연료전지 기술 및 제품	474
17) SAFCell Inc. (SAFC, USA) ······	474
(1) 일반 현황	474
(2) 연료전지 기술 및 제품	475
(3) 연료전지 관련 주요동향	476
18) Solid Cell Inc. (SOFC, USA) ······	476
(1) 일반 현황	476
(2) 연료전지 기술 및 제품	477
19) WATT Fuel Cell Corporation	478
(1) 일반 현황	478
(2) 연료전지 기술 및 제품	····· 478
(3) 연료전지 관련 주요동향	
1-2. 유럽의 발전용 연료전지 주요업체	480
1) ACAL Energy Ltd. (PEMFC, UK) ·····	480
(1) 일반 현황	480
(2) 연료전지 기술 및 제품	····· 480
(3) 연료전지 관련 주요동향	483
2) AFC Energy PLC. (AFC Plant, UK)	483
(1) 일반 현황	483
(2) 연료전지 기술 및 제품	484
(3) 연료전지 관련 주요동향	486
3) Ceres Power Holdings PLC (SOFC Stack, UK)	490
(1) 일반 현황	490

(2) 연료전지 기술 및 제품	490
(3) 연료전지 관련 주요동향	493
4) Dantherm Power A/S (PEMFC, Denmark) ······	494
(1) 일반 현황	494
(2) 연료전지 기술 및 제품	495
(3) 연료전지 관련 주요동향	497
5) Electro Power Systems S.A. (PEMFC, Italy)	497
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	500
6) Genport srl (PEMFC, Italy) ·····	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
7) Intelligent Energy (PEM Stack, UK) ·····	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
8) myFC AB (PEMFC, Sweden) ·····	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
9) Nedstack (PEMFC, Netherlands)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
10) Proton Motor Fuel Cell (PEMFC, Germany)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
11) SerEnergy A/S (HT-PEMFC, Denmark)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	
12) SFC Energy AG (DMFC, Germany)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	524

(3) 연료전지 관련 주요동향	531
13) SOLIDpower S.p.a. (Italy) ······	533
(1) 일반 현황	533
(2) 연료전지 기술 및 제품	533
(3) 연료전지 관련 주요동향	535
14) Sunfire GmbH (SOFC, Germany)	536
(1) 일반 현황	536
(2) 연료전지 기술 및 제품	536
(3) 연료전지 관련 주요동향	539
15) Tropical S.A. (PEMFC, Greece)	540
(1) 일반 현황	540
(2) 연료전지 기술 및 제품	540
(3) 연료전지 관련 주요동향	545
1-3. 일본 및 아시아의 발전용 연료전지 주요업체	546
1) Horizon Fuel Cell Technologies (PEMFC, Singapore)	····· 546
(1) 일반 현황	····· 546
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	555
2) Mitsubishi Hitachi Power Systems, Ltd. (SOFC, Japan) ······	
(1) 일반현황	
(2) 연료전지 기술 및 제품	556
(3) 연료전지 관련 주요동향	
3) Panasonic Corporation (PEMFC, Japan) ·····	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	561
(3) 연료전지 관련 주요동향	
4) Toshiba Corporation (PEMFC, Japan)	
(1) 일반 현황	
(2) 연료전지 기술 및 제품	
(3) 연료전지 관련 주요동향	······ 571
2. 연료전지관련 국제기구/기관/단체 현황	573
2-1. 수소/연료전지 관련 국제기구/단체	
1) GGGI ·····	
2) WEC	
3) IEA	575
4) IRENA	576

5) IIED	577
6) FCHEA	578
7) IPHE	579
8) IAEE	580
9) 세계수소에너지협회 (IAHE)	580
10) 수소로의 이행 촉진 Partnership (PATH)	581
11) 신재생에너지정책네트워크 (REN21) ·····	581
12) Green Car Congress (GCC) ·····	····· 582
13) Fuel Cells 2000	····· 582
2-2. 미국 수소/연료전지 관련 기관 및 단체	583
1) 미국 에너지부 (DoE) ·····	583
2) 미국 에너지효율 및 신재생에너지처 (EERE) ·····	583
3) State and Regional Fuel Cell and Hydrogen Associations	584
4) National Fuel Cell Research Center (NFCRC) ·····	585
5) 미국 에너지효율경제협회 (ACEEE) ·····	
6) 미국 FCHEA ·····	586
2-3. 유럽의 수소/연료전지 관련 기구 및 단체	588
1) 독일 재생가능에너지위원회 (FNR) ·····	
2) 독일 NOW GmbH ·····	
3) 영국 에너지 & 기후변화부 (DECC)	
4) 영국 주요재생에너지협회 (RenewableUK) ·····	
5) 유럽 EHA ·····	
6) 유럽 FCH JU ·····	
2-4. 아시아의 수소/연료전지 관련 기구 및 단체	
1) 일본 경제산업성 (METI)	595
2) 일본 자원에너지청 (ANRE) ······	
3) 일본 신에너지산업기술종합개발기구 (NEDO) ······	
4) 일본연료전지상업화추진협의회 (FCCJ) ······	
5) 일본 수소공급·이용기술연구조합 (HySUT) ······	
6) 중국 국가발전개혁위원회 (NDRC)	
7) 중국 국가발전개혁위원회 에너지연구소 (ERI) ······	
8) 중국 국가 에너지청 (NEA)	
9) 인도 수소협회 (HAI) ·······	600
IV. 부록	603

1-1. Stationary Fuel Cell Applications ·····	603
1) Fuel Cell Power Systems - System Design/Testing	603
2) Fuel Cell Power Systems - Nameplates ·····	
3) Fuel Cell Power Systems - 성능(효율, 배출, 내구) ·····	605
4) Fuel Cell Power Systems - Subsystems	
(1) Fuel Cell Modules ·····	606
(2) Fuel Cell Modules - Subscale Testing	607
(3) Inverters ·····	608
5) Fuel Cell Power Systems - Installation	608
6) Fuel Cell Power Systems - Electrical Interfaces	609
(1) With Panel Board ·····	609
(2) With Grid ·····	609
7) International Organization for Standardization (ISO)	610
1-2. Portable & Micro Fuel Cells ·····	·· 611
1) Portable Fuel Cells - System Design/Testing	·· 611
2) Portable Fuel Cells - Fuel Tanks	·· 612
3) Micro Fuel Cells ·····	·· 612
2. 글로벌 상업적 수소 생산 능력	
2-1. 수소 생산의 에너지 전환 효율	
2-2. 국가별 수소 생산 능력 (@ Refineries)	
2-3. 지역별 상업적 수소 생산 능력	
1) Asia 지역 상업적 수소 생산 능력	
2) 북미 지역 상업적 수소 생산 능력	
3) Europe 지역 상업적 수소 생산 능력	
4) 기타지역 (Rest of World) 상업적 수소 생산 능력	
3. DoE의 Fuel Cell Components Testing Protocols ····································	632
4. Global 주요 Fuel Cell Industry Companies ·······	640
4-1. Fuel Cell Developer	
4-2. Fuel Cell Components & Testing	643
4-3. Hydrogen Supplier ·····	646
4-4. Services Provider	648
4-5. Non-Governmental Org.	650
4-6. Governmental Org. ····	
5. 수소연료전지 Equity & Investment List ·······	654
	55 1

│. 수소 연료전지와 연료전지 발전산업 개관	41
<표1-1> 수소의 특징	···· 41
<班1-2> Hydrogen Properties ······	44
<표1-3> Hydrogen과 다른 Fuels의 Properties 비교 ······	45
<翌1-4> Energy Equivalency of Fuels ······	46
<표1-5> Cell의 동작 순서 ·····	···· 52
<표1-6> Fuel Cell Stack의 각 부품별 기능 요약	···· 53
<표1-7> 연료전지 효율성을 높이기 위한 방법	57
<표1-8> 연료전지 System 각 구성부분 및 그 역할	···· 58
<표1-9> 연료전지의 특징 및 장점	59
<표1-10> 연료전지의 유용성	
<표1-11> 용도별 연료전지 구분	65
<표1-12> 후지경제의 용도별 연료전지 시장 규모 예측	66
<표1-13> 에너지원별 이용률 및 필요 설치면적 비교	66
<표1-14> 자동차용 연료전지의 기대효과	
<표1-15> PEMFC 구성, 특징, 개발방향 ·····	
<표1-16> 저온형과 고온형 PEMFC의 차이점 요약	
<표1-17> 중앙집중식 발전과 SOFC 사용 분산발전의 비용 및 배출량 비교	
<표1-18> SOFC(Solid Oxide Fuel Cell) 구조, 특징, 개발방향 ·····	
<표1-19> 각국의 SOFC 개발 현황 ·····	
<표1-20> SOFC 시스템의 공급망	
<표1-21> MCFC의 구성, 장단점, 주요용도	
<표1-22> Applications category 및 관련 연료전지 기술 ·····	
<표1-23> 용도별 연료전지 종류	
<표1-24> 발전 용량별 연료전지 종류	····· 81
<표1-25> 휴대용 Application의 주요 유인점	
<표1-26> 전해질에 의한 연료전지의 분류 (고온형과 저온형 분류)	
<표1-27> 연료전지 Type별 기술적 특성 비교	
<표1-28> Fuel Cell Type별 작동 특징 비교 ·····	
<표1-29> Fuel Cell Type 별 시장 분석	
<표1-30> 연료전지 기술별 용도 및 장단점 비교	
<표1-31> 발전용 연료전지 사용이 주는 Main Benefits	88

<표1-32> 오염물질 배출량 비교 (2014년 독일 Remodelling 단독주택 실사용례)	90
<표1-33> Economic Cost 비교 (2014년 독일 Remodelling 단독주택 실사용례) ·······	91
<표1-34> 연료전지 출하량 현황	······ 92
<표1-35> 연료전지 Megawatts 생산량 현황 ·····	
<표1-36> 3 Energy Scenarios for 2050 요약 ·····	95
<표1-37> 유럽에서의 발전용 연료전지 상업화 궤도 전망	96
<표1-38> 발전용 연료전지 System 특성 ······	97
<표1-39> 국내 주택용 연료전지 설비 설치효과	99
<표1-40> 주택용 연료전지 설비 경제성 분석 (한국 vs. 일본, 2016.07) ·······	
<표1-41> 국내 건물용 연료전지 설비 경제성 분석	
<표1-42> 에너지원별 건축물 년면적별 설치규모/설치면적 비교	101
<표1-43> 연료전지 발전 시스템의 특징	
<표1-44> 발전사업용 연료전지 산업동향	104
Ⅱ. 해외 주요국 발전용 연료전지 관련 정책/실증/산업 동향	·····115
<표2-1> US DOE의 수소연료전지 관련 RD&D 예산 ······	
<班2-2> FY13-FY15 Funding by State (FCTO) ······	119
<표2-3> 최근의 U.S. DOE FCTO FUNDING AWARDS	120
<표2-4> 최근의 U.S. DOE NETL FUNDING AWARDS BY STATE	
<班2-5> Small Business Innovation Research (SBIR) Program ····································	125
<班2-6> Project Listings by Organization	126
<표2-7> 보고서에 사용된 Acronyms	141
<표2-8> 관련 에너지 규제 조항 (Energy Regulatory Terms) 해석 ·····	142
<표2-9> 연료전지가 각 주에 제공하는 다양한 이득	143
<표2-10> 미국 거대 기업들의 연료전지 구매 현황	144
<표2-11> 州별 Fuel Cell & Hydrogen Support 현황 Chart (2014.07) ······	145
<표2-12> NEESC의 미국 북동부 지역 8개 주의 수소/연료전지 산업 분석	151
<표2-13> 연료전지 산업계 주정부의 FUNDING AWARDS (2014.08-2015.07) ·········	······ 152
<표2-14> 연료전지 관련 산업으로 이동하는 기업들	154
<표2-15> 자금지원을 받은 Start-up Companies ·····	
<표2-16> 군용 시설에서의 연료전지 채용	155
<표2-17> 대학레벨 수소/연료전지 연구의 DOE FUNDING (2014.08~2015.07) ········	157
<표2-18> New York의 2개 대학의 연료전지 R&D에 대한 투자	157
<표2-19> 미국을 근거지로 하는 연료전지 회사들의 해외 활동	159
<표2-20> 수소/연료전지 산업을 지원하는 Leading states 선정의 4 가지 기준	161
<班2-21> 2016 Incentive Rates by Eligible Technologies ········	
<표2-22> California의 고정형 연료전지 설치 Companies ······	162

<班2-23>	고정형 연료전지 설치 장소-California Municipal Sites	163
	Connecticut의 고정형 연료전지 설치 현황 ·····	
<班2-25>	New York 주의 고정형 연료전지 사용자-Companies ·····	168
<班2-26>	고정형 연료전지 설치장소-New York wn Municipal Sites	168
	Community Clean Energy Resiliency Initiative grant program	
<丑2-28>	Massachusetts 주의 고정형 연료전지 설치 현황 ·····	171
<班2-29>	주별 고정형 연료전지를 위한 Policy/Incentives 존재 여부	174
<班2-30>	NEESC 수소/연료전지 발전 계획안 8개 주별 목표	175
<班2-31>	Connecticut 州의 Hydrogen Fuel Cell Industry Economic Data (2011)	175
<班2-32>	Connecticut SWOT Analysis ·····	175
<班2-33>	Connecticut 주의 Hydrogen Fuel Cell Policy Incentives & Targets	176
<班2-34>	Commercial Property Assessed Clean Energy (C-PACE) Program	177
	Connecticut 州의 잠재적인 고정형 연료전지 설치 장소 현황	
<班2-36>	잠재적인 고정형 수소/연료전지 설치장소 범례	179
	Maine 州의 Hydrogen Fuel Cell Industry Economic Data (2011) ········	
<班2-38>	Maine SWOT Analysis ·····	181
<班2-39>	Maine 州의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits	181
<班2-40>	Maine 주의 잠재적인 고정형 연료전지 설치 장소 현황	182
<班2-41>	잠재적인 고정형 수소/연료전지 설치장소 범례	183
<班2-42>	Massachusetts 州의 Hydrogen Fuel Cell Industry Economic Data	184
<班2-43>	Massachusetts SWOT Analysis ·····	185
<班2-44>	Massachusetts 베의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits …	185
<班2-45>	Massachusetts 주의 잠재적인 고정형 연료전지 설치 장소 현황	186
<登2-46>	잠재적인 고정형 수소/연료전지 설치장소 범례	187
<班2-47>	New Hampshire 州의 Hydrogen Fuel Cell Industry Economic Data	188
<班2-48>	New Hampshire SWOT Analysis	189
<班2-49>	New Hampshire 州의 수소연료전지 Policy Incentives & Targets & Benefits …	189
<班2-50>	New Hampshire 州의 잠재적인 고정형 연료전지 설치 장소 현황	190
<班2-51>	잠재적인 고정형 수소/연료전지 설치장소 범례	191
<班2-52>	New Jersey 州의 Hydrogen Fuel Cell Industry Economic Data (2011) ·········	192
<班2-53>	New Jersey SWOT Analysis	193
<班2-54>	New Jersey 케의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits	193
<班2-55>	New Jersey 州의 잠재적인 고정형 연료전지 설치 장소 현황	194
<班2-56>	잠재적인 고정형 수소/연료전지 설치장소 범례	195
<班2-57>	New York 州의 Hydrogen Fuel Cell Industry Economic Data (2011) ·············	196
<班2-58>	New York SWOT Analysis ····	197
<班2-59>	New York 州의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits	197

<班2-60> 1	New York 州의 잠재적인 고정형 연료전지 설치 장소 현황	198
<翌2-61>	잠재적인 고정형 수소/연료전지 설치장소 범례	199
<丑2-62> I	Rhode Island 州의 Hydrogen Fuel Cell Industry Economic Data (2011) ·······	200
<丑2-63> I	Rhode Island SWOT Analysis	201
<丑2-64> I	Rhode Island 州의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits …	201
<班2-65> I	Rhode Island 州의 잠재적인 고정형 연료전지 설치 장소 현황	202
< 32-66 > 3	잠재적인 고정형 수소/연료전지 설치장소 범례	203
<丑2-67> V	Vermont 州의 Hydrogen Fuel Cell Industry Economic Data (2011) ······	204
<班2-68> V	Vermont SWOT Analysis ·····	205
<班2-69> V	Vermont 州의 Hydrogen Fuel Cell Policy Incentives & Targets & Benefits …	205
<班2-70> V	Vermont 州의 잠재적인 고정형 연료전지 설치 장소 현황	206
<	잠재적인 고정형 수소/연료전지 설치장소 범례	207
<班2-72> 1	미국의 고정형 연료전지 설치/계획 요약	209
<班2-73> 「	미국 California주 고정형 연료전지 (25kW 이상) 설치/계획 현황	209
<班2-74> 「	미국 Connecticut주 고정형 연료전지 (25kW 이상) 설치/계획 현황	247
<班2-75> ロ	미국 New Jersey주 고정형 연료전지 (25kW 이상) 설치/계획 현황	257
<班2-76> で	미국 New York주 고정형 연료전지 (25kW 이상) 설치/계획 현황	259
<班2-77> 「	미국 Alaska주 고정형 연료전지 (25kW 이상) 설치/계획 현황	265
<班2-78> 1	미국 Arizona주 고정형 연료전지 (25kW 이상) 설치/계획 현황	266
<班2-79> 1	미국 Delaware주 고정형 연료전지 (25kW 이상) 설치/계획 현황	266
<班2-80> 「	미국 Maryland주 고정형 연료전지 (25kW 이상) 설치/계획 현황	266
<班2-81> で	미국 Hawaii주 고정형 연료전지 (25kW 이상) 설치/계획 현황	267
< 32−82> 1	미국 Illinois주 고정형 연료전지 (25kW 이상) 설치/계획 현황	267
<班2-83> で	미국 Massachusetts주 고정형 연료전지 (25kW 이상) 설치/계획 현황	268
<班2-84> 「	미국 Montana주 고정형 연료전지 (25kW 이상) 설치/계획 현황	268
<班2-85> で	미국 North Carolina주 고정형 연료전지 (25kW 이상) 설치/계획 현황	269
< 32−86> 1	미국 Nebraska주 고정형 연료전지 (25kW 이상) 설치/계획 현황	269
<班2-87> 「	미국 Rhode Island주 고정형 연료전지 (25kW 이상) 설치/계획 현황	269
<₩2-88> 1	미국 New Mexico주 고정형 연료전지 (25kW 이상) 설치/계획 현황	270
<⊞2-89> ™	미국 Ohio주 고정형 연료전지 (25kW 이상) 설치/계획 현황	270
<⊞2-90> ™	미국 Philadelphia주 고정형 연료전지 (25kW 이상) 설치/계획 현황	271
<班2-91> で	미국 Texas주 고정형 연료전지 (25kW 이상) 설치/계획 현황	271
	미국 Utah주 고정형 연료전지 (25kW 이상) 설치/계획 현황	
<班2-93> で	미국 Virginia주 고정형 연료전지 (25kW 이상) 설치/계획 현황	272
<班2-94> で	미국 Wisconsin주 고정형 연료전지 (25kW 이상) 설치/계획 현황	272
<班2-95> で	미국 Wyoming주 고정형 연료전지 (25kW 이상) 설치/계획 현황	272
<班2-96>	수소사용 Fuel Cell Backup Power Systems (1 - 10kWe) 기술목표	273

<표2-97> 천	선연가스 사용 1 - 25kWe CHP/DG 연료전지 시스템 Technical Targets	274
<표2-98> 천	런연가스 사용 100 kW - 3 MW CHP/DG 연료전지 시스템 Technical Targets	275
<班2-99> P	Portable Power Fuel Cell Systems (5 - 50 Watts / 100 - 200 Watts) 기술목표	276
<班2-100>	Ultra-low Sulfur Diesel Fuel 사용 APU (1~10 kWe) 연료전지 System 기술목표	277
<	Technical Task Descriptions	278
<班2-102>(Catalysts/Electrodes R&D Milestones	281
<班2-103> 1	Electrolytes R&D Milestones ·····	282
<班2-104> 1	Membrane Electrode Assemblies, Cells, 기타 Stack 부품 R&D Milestones …	282
<班2-105> 1	Fuel Cell Performance and Durability R&D Milestones	283
<班2-106>:	System BOP Components R&D Milestones	283
<班2-107> 2	Fuel Cell Systems R&D Milestones	283
<班2-108>	Testing and Technical Assessments R&D Milestones	284
<班2-109>	공동 연구 참여자 List	285
<	발전된 유럽의 Energy Goal & Target ·····	286
<班2-111>	발전용 연료전지 상업화를 방해하는 Barriers 및 Huddles	290
<班2-112>	연료전지 상업화 방해요소 (Across All Segments) 극복 전략 ·····	291
<班2-113>:	Stationary Fuel Cell Systems의 Revenue models ······	292
<班2-114>	건물 용도에 따른 발전용 연료전지의 Main Market Segments ·····	293
<	시장 접근 난이도에 따른 시장 구분	293
<	유럽 Focus 4 Market, 발전용 연료전지 시장 규모 및 추정(2030)	294
<	유럽의 발전용 연료전지 시장분석 요약	294
<	독일 Munich 소재 부분 개수된 1가구 단독주택 기술별 난방비용 추이	295
<班2-119>	독일 Munich 소재 부분 개수된 1가구 단독주택 기술별 Emissions 비교	295
<班2-120>	주택용 연료전지 mCHP vs 경쟁 기술 mCHP 비교	296
<班2-121>	유럽시장에서 구매자의 주택용 연료전지 mCHP 결정기준 분석	297
<班2-122>	영국 Nottingham 소재 Apartment Building 기술별 난방비용 변화 추이	298
<班2-123>	영국 Nottingham 소재 Apartment Building 기술별 Emissions 비교	299
<班2-124>	상업적 건물용 중형 연료전지 CHP vs 경쟁 기술 CHP 비교	300
<班2-125>	유럽시장 구매자의 소규모 주거건물용 연료전지 mCHP 결정기준 분석	301
<	유럽시장에서 실적용된 산업시설별 연료전지 Applications	304
<	산업시설용 대형 연료전지 CHP vs 경쟁 기술 CHP 비교	305
<班2-128>	선별된 연료전지 우선 적용 산업 시설	306
<班2-129>	유럽시장에서 산업시설용 연료전지 발전장치 결정기준 분석	307
<亞2-130>	유럽시장에서의 발전용 연료전지 구분	310
<亞2-131>	유럽시장에서의 발전용 연료전지 분석 Points	311
<班2-132>	주택용 Full Packaged Fuel Cell mCHP 구성 및 제원	311
	독일의 주택용 연료전지 mCHP 종류 및 제원	

<班2-134>	주택용 연료전지 micro-CHP의 Technical Features	313
<班2-135>	소규모 주거건물용 Full Packaged Fuel Cell mCHP 구성 및 제원	314
<班2-136>	소규모 주거건물용 Mini - CHP의 Technical Features	315
<班2-137>	상업적 건물용 중형 연료전지 CHP 구성 및 제원	316
<班2-138>	상업적 건물용 중형 연료전지 CHP의 Technical Features	317
<班2-139>	산업용 연료전지 발전장치 (Data Centres용 위주) 구성 및 제원	319
<班2-140>	산업용 연료전지 발전장치의 Technical Features	320
<班2-141>	독일 소재 Data Centre Energy Cost 변화 추이 ·····	320
<班2-142>	산업용 천연가스-CHP 구성 및 제원	321
<班2-143>	산업용 천연가스-CHP의 Technical Features	322
<班2-144>	UK 소재 제약업체 생산시설 Energy Cost 변화 추이	323
<班2-145>	Italy 소재 화학업체 생산시설 Energy Cost 변화 추이	323
<班2-146>	산업용 Biogas-CHP 구성 및 제원 ·····	324
	산업용 Biogas-CHP의 Technical Features	
<班2-148>	UK 소재 양조장 생산시설 Energy Cost 변화 추이	326
<班2-149>	Poland 소재 WWTP Energy Cost 변화 추이	326
	유럽의 주택용 연료전지 mCHP 분야 Value Chain ·····	
<班2-151>	유럽의 주택용 연료전지 mCHP 분야 Go-2-market 전략	328
<班2-152>	유럽의 상업적 건물용 연료전지 CHP 분야 Value Chain ·····	329
<班2-153>	유럽의 상업적 건물용 연료전지 CHP 분야 Go-2-market 전략	329
<班2-154>	유럽의 산업시설용 연료전지 CHP 분야 Value Chain ·····	330
	유럽의 산업시설용 연료전지 CHP 분야 Go-2-market 전략	
	지원정책의 Type별 Category 구분 ·····	
	유럽의 연료전지 지원정책: ene.field 개요	
	독일의 연료전지 지원 Funding Program: CALLUX 개요	
	독일의 연료전지 지원정책: KWK Gesetz 개요	
	독일의 연료전지 지원정책: Investment Program ······	
	영국의 지원정책: Renewable Heat Incentive (RHI) 개요	
	영국의 지원정책: Feed-in Tariff (FiT) 개요 ······	
	Italy의 지원정책: Tradable White Certificates 개요	
	ene.field 경과보고-2016년 6월 Italy ·····	
	분야별 Project Partners ·····	
<丑2-166>	ene.field Checklist & Member States & 국가별 FC micro-CHP Providers …	341
	설치된 FC micro-CHP Systems Technical Characteristics	
	개발 및 판매 중인 주택용 FC micro-CHP Systems ·····	
	Environmental Attitudes ····	
<班2-170>	Environmental Behaviour	345

<班2-171>	Primary Space Heating System에 대한 의견 ·····	. 346
<班2-172>	건물 Age vs. 난방/온수 만족도 (점수: 0-5) ·····	. 346
<班2-173>	현재의 난방/온수 시스템에 대한 만족도	· 347
<班2-174>	Future Energy & Renewable Energy Sources에 대한 의견 ·····	· 347
<班2-175>	FC micro-CHP unit에 기대하는 성능 ·····	. 348
<班2-176>	FCH-JU의 Technology Readiness Levels (TRL) ······	. 350
<班2-177>	CHP와 발전용 고정형 Fuel cell systems R&D Targets	. 350
<班2-178>	ESS와 Grid Balancing을 위한 재생에너지 이용 수소생산 R&D Targets	· 351
<班2-179>	다종 연료사용 저탄소 footprint & 폐수소복구 H2생산기술 R&D Targets	. 352
<班2-180>	Hydrogen storage, handling and distribution의 R&D Targets	. 353
<班2-181>	사용된 약어 해설 List	. 353
<班2-182>	MAIP 5개 주요 'Application Areas'	. 355
<班2-183>	MAWP 2014-2020 구조하에서의 FCH 2 JU 활동 ·····	. 356
<班2-184>	FCH JU와 FCH 2 JU의 지원자금 수혜자 분포 (단체별)	· 357
<班2-185>	PRR 2015 REVIEW PANELS	. 358
<班2-186>	FCH JU 에너지 분야 자금지원 예산 분배 현황 (2014-2020) ·····	. 358
<班2-187>	2015 review-Stationary FC 실증/PoC 분야 Project List ······	. 359
<班2-188>	Stationary FC 실증 분야 Focus / Portfolio ·····	. 360
<班2-189>	2015 review-Stationary FC Research & Innovation 분야 Project List	· 361
<班2-190>	Stationary FC Research & Innovation 분야 Focus / Portfolio ······	· 362
<班2-191>	Stationary FC Research & Innovation 분야 2015년 주요성과	· 362
<班2-192>	2015 리뷰-수소 생산/저장/운반 분야 실증/Research/Innovation Project List …	· 363
<班2-193>	수소 생산/저장/운반 실증 및 Research & Innovation 분야 Focus / Portfolio …	· 364
<班2-194>	수소 생산/저장/운반 실증 및 Research & Innovation 분야 2015년 주요성과 …	· 365
<丑2-195>	지급계획 일정 요약	. 367
<班2-196>	PAYMENT SCHEDULE DETAILS (Operational)	· 367
<班2-197>	Annual Work Plan 2016: 기술-경제적 목표 및 Topics ·····	· 367
<班2-198>	Risk Assessment & Action Plan	. 369
<班2-199>	수소사회 실현을 위한 행동계획(Action Plan) 5개 항목	• 370
<班2-200>	수소사회 실현을 향한 3단계 접근 방안	• 370
<班2-201>	일본 정부 주도의 수소 기반 기술개발과 실증사업 및 보급 계획	• 373
<班2-202>	Nedo의 연료전지 관련 FY2016 R&D Plan ·····	• 373
<班2-203>	FY 2015 수소/연료전지 관련 예산 (2014 추가 예산 포함) ·····	• 373
<班2-204>	일본 각 회사별 가정용 연료 전지 시스템 (Ene-Farm System)	• 375
<班2-205>	보급확대를 위한 주요 과제 요약	. 378
<班2-206>	주택용 연료전지의 사용자 확대 추진 방안	. 383
<班2-207>	주택용 연료전지의 해외 전개 추진 방안	. 385

<표2-208> 일본 내 업무/산업용 연료전지 Type별 /업체별 도입현황	386
<표2-209> NEDO의 5kW SOFC System 실증 Project 일정 및 내용	387
<표2-210> 업무/산업용 연료전지의 보급 확대 추진 방안	
<표2-211> 기타큐슈 수소타운 실증 Project의 목적	390
Ⅲ. 해외 연료전지 관련 사업 참여업체 사업전략	···395
<표3-1> Altergy Systems 프로필	
<포3-2> Altergy의 Fuel Cell Engine Modules-Freedom PowerTM Tchnology	
<표3-3> Altergy System의 Expo 참여 일정 ·····	
<표3-4> Altergy System의 연료전지 관련 동향 ·····	398
<표3-5> Altergy System의 연료전지 System Distributors	
<표3-6> Atrex Energy 프로필 ·····	
<표3-7> Atrex Energy의 SOFC Technology 특징	399
<班3-8> Atrex Energy Remote Power Generator System	
<표3-9> Ballard Power Systems Inc. 프로필	
<표3-10> Ballard의 연료전지 제품군 분류	402
<표3-11> 연료전지 Stacks - FCgen® & FCvelocity®	
<표3-12> 발전용 수소연료전지 System: FCgen®-H2PM systems (1.7 kW & 5.0 kW) ·	
<포3-13> Ballard의 Technology Solutions Service ····································	406
<표3-14> Ballard의 연료전지 관련 주요동향	407
<표3-15> Bloom Energy corp. 프로필 ······	408
<표3-16> Bloom UPM 제원	409
<표3-17> Bloom Energy Server 제품군 제원 ·····	··· 410
<표3-18> eBay Data Center의 설치 예 ·····	··· 411
<표3-19> Bloom Energy의 주요 특허	··· 412
<표3-20> Bloom Energy Server 주요 Customer 설치 사례 ·····	··· 412
<표3-21> Bloom Energy의 연료전지 관련 주요동향	··· 413
<표3-22> Dana Holding Corp. 프로필 ·····	··· 414
<표3-23> Dana의 Hydrogen Reformer 특징 및 기능	··· 415
<표3-24> Dana의 Stack Components 특징 및 기능	··· 416
<표3-25> Dana의 Fuel Cell용 Thermal-Management Systems 특징 및 기능	··· 417
<표3-26> Dana의 연료전지 관련 주요동향	··· 418
<표3-27> ㈜두산퓨얼셀 프로필	··· 418
<표3-28> 두산 PureCell® Model 400 CHP Solution 설치 현황	··· 419
<표3-29> ElectroChem 프로필 ·····	
<표3-30> ElectroChem의 Research Projects ······	
<표3-31> ElectroChem의 보유 특허	··· 421

<班3-32>	IFF (Integrated Flow Field) Design ·····	·· 421
	IFF (Integrated Flow Field) 적용 장치 ·····	
<班3-34>	ElectroChem's ECcellTM Power System (ESS)	·· 422
	ElectroChem EC-EL-50 Electrolyzer	
	ElectroChem PEM Stacks	
<班3-37>	ElectroChem Conductivity Fuel Cell kit ·····	·· 424
	ElectroChem의 연료전지 관련 주요동향 ·····	
<班3-39>	First Element Energy LLC 프로필 ·····	·· 425
<班3-40>	First Element Energy의 연료전지(2-25 kW) 제원 ·····	426
<班3-41>	HY~SINE ENHANCED UPS w/Fuelcell Generator & Cabinet	·· 427
	First Element Energy의 연료전지 관련 주요동향	
	FuelCell Energy Inc. 프로필 ·····	
	포스코 에너지의 투자 내용	
	DFC의 특징 및 장점 ·····	
	DFC Carbonate Fuel Cell Power Plants의 특장점	
	저비용 고효율 DFC Carbon Capture System ·····	
	Versa Power Systems 프로필 ·····	
	FuelCell Energy의 연료전지 관련 주요동향	
<班3-50>	GEI Global Energy Corporation 프로필 ·····	440
	GEI의 X5 Smart Adaptable Fuel Cell Auxiliary Power Unit 제원	
	Hydrogenics 프로필 ·····	
	Hydrogenics의 사업분야 ·····	
	Hydrogenics의 Electrolysis Technology ······	
	용도별 제품 분류	
	Medium Duty Fuel Cell Power Module ·····	
	Heavy Duty Fuel Cell Power Module	
	Hydrogenic's MW Power Plant platform 제원	
	HyPMTM XR Fuel Cell Power Modules	
<班3-60>	HyLYZER® PEM Electrolyser 제원	450
<班3-61>	HySTAT® hydrogen generator-HySTAT® 10 or 15 제원	·· 451
	HySTAT® hydrogen generator-HySTAT® type V 제원	
<班3-63>	Hydrogenics의 Power to Gas Projects ······	·· 453
	Hydrogenics의 Electrolysis-based Fueling Station Projects ····································	
	Hydrogenics의 연료전지 관련 주요동향 ·····	
	LG퓨얼셀시스템즈 프로필	
	SECA 지원 개발 Phase ·····	
<班3-68>	Materials & Systems Research, Inc. 프로필 ······	460

<표3-69> MSRI의 Patent 현황	460
<표3-70> MSRI의 Solid Oxide Fuel Cell (SOFC) Technology	461
<표3-71> MSRI의 Products ·····	
<표3-72> Oorja Fuel Cells 프로필 ·····	····· 463
<표3-73> Fork Lift Powerpack용 battery, 수소연료전지, DMFC 비교	464
<班3-74> Oorja Products - DMFC - Markets ·······	465
$<\!$	465
$<\!$	466
<班3-77> Oorja Stationary Refueling Station Specifications	····· 467
<班3-78> Oorja Mobile Refueling Station Specifications	····· 467
<표3-79> Oorja Fuel Cells의 연료전지 관련 주요동향	468
<표3-80> Plug Power Inc. 프로필	····· 468
<표3-81> GenDrive: ForkLift Truck용 GenDrive Series 제원	469
<班3-82> GENSURE E-200TM HYDROGEN FUEL CELL ·······	470
<班3-83> GENSURE E-1100TM HYDROGEN FUEL CELL	470
<班3-84> GENSURE E-1100VTM HYDROGEN FUEL CELL ······	471
<班3-85> GENSURE E-2500TM HYDROGEN FUEL CELL ······	471
<班3-86> GENSURE E-1000XTM HYDROGEN FUEL CELL ······	····· 472
<班3-87> GENSURE E-2200XTM HYDROGEN FUEL CELL ······	····· 472
<표3-88> Plug Power의 연료전지 관련 주요동향	····· 473
<표3-89> Redox Power Systems, LLC. 프로필 ·····	····· 473
<표3-90> The Redox Cube 제원	
<표3-91> SAFCell Inc. 프로필 ·····	474
<班3-92> SAFCell Solutions ·····	475
<표3-93> Solid Acid Fuel Cell technology의 특징	475
<표3-94> SAFCell의 연료전지 관련 주요동향	476
<표3-95> Solid Cell Inc. 프로필 ·····	476
<班3-96> Solid Cell Patents ·····	
<班3-97> Solid Cell Products ·····	
<표3-98> Watt Fuel Cell Corporation 프로필 ·····	····· 478
<班3-99> WATT Imperium Portable Hybrid SOFC System ······	····· 479
<표3-100> WATT의 연료전지 관련 주요동향	····· 479
<표3-101> ACAL Energy Ltd. 프로필 ·····	
<표3-102> ACAl Energy의 연료전지 관련 주요동향	
<표3-103> AFC Energy plc 프로필 ·····	····· 483
<표3-104> 연료전지 타입별 작동온도/전기적 효율성 비교	484
$<\!$	485

<班3-106>	AFC의 연료전지 관련 주요동향	486
<班3-107>	EU FCH-JU Funded POWER-UP Programme 요약 ······	487
<班3-108>	EU FCH-JU Funded Project ALKAMMONIA 요약	488
<班3-109>	AFC의 Global 상업적 Project ······	489
<班3-110>	Ceres Power Holdings plc 프로필 ······	490
<班3-111>	SOFC evolution - Ceres Steel Cell	491
<班3-112>	주요 시장에서의 Scenario analysis ·····	492
<班3-113>	Ceres Power의 연료전지 관련 주요동향 ······	493
<班3-114>	Dantherm Power 프로필 ·····	494
<班3-115>	FCgen®-H2PM systems(Direct Hydrogen Backup Power Solutions) 제원 …	495
<班3-116>	Electro Power Systems S.A. 프로필 ·····	497
<班3-117>	Electro의 ESS 설치 현황 (2016.08) ·····	498
<班3-118>	Electro의 연료전지 관련 주요동향 ·····	500
<班3-119>	Genport srl 프로필 ····	501
<班3-120>	Genport의 주요 R&D Milestones ·····	501
<班3-121>	Genport의 소형 발전용 연료전지 - G1000 HPS	502
	Genport의 Portable 연료전지 G300 HFC Series ·····	
<班3-123>	Genport가 참여한 EU Projects ·····	504
<班3-124>	Intelligent Energy 프로필 ····	505
<班3-125>	305 modular fuel cell system 제원 ·····	506
	Intelligent Energy의 Associations Memberships ·····	
	Intelligent Energy의 연료전지 관련 주요동향 ·····	
	myFC AB 프로필 ····	
<班3-129>	myfc PowerTrekk Fuel Cell Charger	510
<班3-130>	myfc pocket sized fuel cell charger-JAQ ·····	511
	Nedstack 프로필 ·····	
	HP STACKS 제원 ·····	
<班3-133>	XXL STACKS 제원 ·····	514
<班3-134>	NEDSTACK 1MW PEM Power Plant (PPP) 개요 및 제원	515
	NEDSTACK의 연료전지 관련 주요동향	
	Proton Motor Fuel Cell 프로필 ·····	
	Proton Motor Stacks: PM 200/400 ·····	
<班3-138>	Proton Motor EV & Fuel Cell Systems: HyRange® 8/25 ·····	517
	Proton Motor H2 Fuel Cell Module: PM Module S5/25 ·····	
	Proton Motor의 연료전지 관련 주요동향 ·····	
	SerEnergy A/S 프로필 ·····	
<班3-142>	SFC Energy AG 프로필 ·····	524

<班3-143>	SFC Efoy-Pro Solutions 종류 ·····	525
<班3-144>	SFC Energy AG의 EFOY Pro Series 의 제원	525
<班3-145>	SFC Energy AG의 EFOY Pro 12000 Duo 제원	526
<班3-146>	SFC Energy AG의 EFOY ProCube 2030A 제원	527
<班3-147>	EFOY ProEnergyBox 4060P 제원 ·····	528
<班3-148>	EFOY ProCabinet 제원 ·····	528
<班3-149>	EFOY ProTrailer 제원 ·····	529
<班3-150>	EFOY COMFORT-Fuel Cells	530
<班3-151>	Fuel Cartridges	531
<班3-152>	SFC의 연료전지 관련 주요동향	531
<班3-153>	SOLIDpower 프로필 ····	533
<班3-154>	SOLIDpower mCHP BlueGEN 제원	534
<班3-155>	SOLIDpower mCHP EnGenTM-2500 제원	534
	SOLIDpower의 연료전지 관련 주요동향	
	Sunfire 프로필 ·····	
<班3-158>	Sunfire의 Solid Oxide Power Core 제원	537
	Sunfire의 연료전지 관련 주요동향	
<班3-160>	Tropical S.A. 프로필 ······	540
	Tropical R&D Department의 H2 연료전지 관련 R&D Projects	
	Tropical S.A.의 연료전지 및 관련제품 ·····	
<班3-163>	Tropical S.A.의 연료전지 System ·····	544
	TROPICAL의 Telecom Networks용 3 Backup Power Solutions	
	TROPICAL의 연료전지 관련 주요동향	
<班3-166>	Horizon Fuel Cell 프로필 ·····	546
<班3-167>	HES Energy Systems (HES) 프로필 ·····	547
<班3-168>	H-Series PEM Fuel Cell Stacks 제원	548
<班3-169>	휴대용 Horizon Minipak® / Hydrostik® / Hydrofill 제원	551
<班3-170>	이동형 AQUIGEN 180 deep-cycle battery charge maintainer 제원	552
<班3-171>	COMPACT OFF-GRID FUEL CELL POWER: MFC MINI	553
	HIGH CAPACITY FUEL CELL POWER: MFC 3000/5000/7500 ······	
	Horizon의 연료전지 관련 주요동향	
	Mitsubishi Hitachi Power Systems, Ltd. 프로필 ·····	
	Mitsubishi의 연료전지 관련 주요 특허	
	소규모 Triple Combined Cycle System 개발 Plan ·····	
	MHPS의 SOFC 발전소 R&D 연혁 ·····	
	Closed-cycle HEML Fuel Cell System 제원 ·····	
<班3-179>	Panasonic Corporation 프로필 ·····	561

<班3-180>	단독주택형 fuel cell (ENE FARM) 외관 및 제원 ·····	561
<班3-181>	공동주택형 fuel cell (ENE FARM) 외관 및 제원 ·····	·· 562
<班3-182>	Matsushita Electric의 연료전지 관련 주요특허 ·····	565
<班3-183>	Panasonic의 ENE-FARM 개발 연혁 ·····	565
	Panasonic의 연료전지 관련 주요동향 ·····	
<班3-185>	Panasonic Corporation 프로필 ····	567
	Toshiba의 독립 Hydrogen Energy Supply System - H2OneTM ······	
	Toshiba의 H2OneTM Truck Model ·····	
<班3-188>	Toshiba의 주택용 Fuel Cell - ENE FARM ·····	570
<班3-189>	Toshiba의 Pure Hydrogen Fuel Cell System vs. ENE FARM ····································	571
<班3-190>	Toshiba의 Hydrogen Energy Storage System ·····	·· 571
	Toshiba의 H2OneTM 설치/예정 (References)	
	Toshiba의 연료전지 관련 주요동향	
<班3-193>	GGGI Profile	·· 573
<班3-194>	WEC Profile ····	574
<班3-195>	IEA Profile ····	575
	IRENA Profile	
	IIED Profile	
	FCHEA Profile	
<班3-199>	IPHE Profile ····	579
	세계에너지경제학회 (IAEE) Profile ·····	
<班3-201>	세계수소에너지협회 (IAHE) Profile ·····	580
<班3-202>	수소로의 이행 촉진 Partnership (PATH) Profile ·····	·· 581
<班3-203>	신재생에너지정책네트워크 (REN21) Profile ·····	·· 581
<班3-204>	Green Car Congress (GCC) Profile ·····	·· 582
<班3-205>	Fuel Cells 2000 Profile ····	·· 582
<班3-206>	미국 에너지부 (DoE) Profile ·····	583
<班3-207>	미국 에너지효율 및 신재생에너지처 (EERE) Profile	583
<班3-208>	State and Regional Fuel Cell and Hydrogen Associations/Coalitions	584
<班3-209>	미국 National Fuel Cell Research Center (NFCRC) Profile	585
<班3-210>	미국 에너지효율경제협회 (ACEEE) Profile ·····	585
<班3-211>	미국 FCHEA Profile ····	586
<班3-212>	독일 재생가능에너지위원회 (FNR) Profile ·····	588
<班3-213>	독일 NOW GmbH Profile ····	588
<班3-214>	영국 에너지 & 기후변화부 (DECC) Profile	589
<班3-215>	영국 주요재생에너지협회 (RenewableUK) Profile ·····	589
<班3-216>	유럽 EHA Profile ·····	590

<표3-217> 유럽 FCH JU Profile	• 590
<표3-218> 일본 경제산업성 Profile ·····	
<표3-219> 일본 자원에너지청 Profile ·····	. 595
<표3-220> 일본 신에너지산업기술종합개발기구 NEDO Profile	. 596
<표3-221> 일본연료전지상업화추진협의회 (FCCJ) Profile	. 597
<표3-222> 일본 수소공급·이용기술연구조합 (HySUT) Profile	. 598
<표3-223> 중국 국가발전개혁위원회 (NDRC) Profile	
<표3-224> 중국 국가발전개혁위원회 에너지연구소 (ERI) Profile	. 599
<표3-225> 중국 국가 에너지청 (NEA) Profile	600
<표3-226> 인도 수소협회 (HAI) Profile ·····	600
IV. 부록	603
<표4-1> 고정식 연료전지 적용장치 - System Design/Testing 관련 Codes & Standards ····	603
<표4-2> Stationary Fuel Cell Applications - Nameplates 관련 Codes & Standards	604
<표4-3> Stationary Fuel Cell Applications - 성능(효율, 배출, 내구) 관련 Codes & Standards ····	605
<표4-4> 고정식 연료전지 적용장치 - Subsystems (FC Modules) 관련 Codes & Standards …	606
<표4-5> 고정식 연료전지 적용장치 - Subsystems(S. Testing)관련 Codes & Standards ····	607
<포4-6> Stationary Fuel Cell Applications - Subsystems(Inverters) 관련 Codes & Standards ····	608
<표4-7> Stationary Fuel Cell Applications - Installation 관련 Codes & Standards	608
<표4-8> Stationary Fuel Cell Applications - 전기(w/Panel Board)관련 Codes & Standards …	609
<표4-9> Stationary Fuel Cell Applications - 전기(w/Grid)관련 Codes & Standards	609
<표4-10> ISO TC22/SC37 WG#1 (Formerly TC22/SC21) 국제 Standards Published	610
<표4-11> Portable Fuel Cells - System Design/Testing 관련 Codes & Standards	· 611
<표4-12> Portable Fuel Cells - Fuel Tanks 관련 Codes & Standards	• 612
<표4-13> Micro Fuel Cells 관련 Codes & Standards	· 612
<표4-14> 수소 생산 kg 당 Fuel Energy Inputs & Outputs (LHV Basis)	614
<표4-15> 수소 생산 kg 당 Fuel Energy Inputs & Outputs (LHV Basis) -처리공정별 효율 …	614
<표4-16> Hydrogen Production Capacity ((MMSCFD, 2016년 1월) ······	• 616
<표4-17> 사업자별 총 상업적 수소 생산 능력	· 618
$<\!$	• 618
$<\!$	• 618
<표4-20> 사업자별/지역별/연도별 총 상업적 수소 생산 능력 (1000 kg/day 이상 업체) ····	· 622
$<\!$	622
$<\!$	· 623
<표4-23> 사업자별/지역별/연도별 총 상업적 수소 생산 능력	• 626
<포4-24> Europe의 Merchant Hydrogen Production Plant Capacities : Liquid H2	• 626
<포4-25> Europe의 Merchant Hydrogen Production Plant Capacities : Gaseous H2	• 626

<班4-26>	사업자별/지역별/연도별 총 상업적 수소 생산 능력6	30
<班4-27>	RoW의 Merchant Hydrogen Production Plant Capacities: Liquid H2 ············ 6	30
<翌4-28>	RoW의 Merchant Hydrogen Production Plant Capacities: Gaseous H2 ········· 6	31
<班4-29>	Electrocatalyst Cycle and Metrics Testing Protocols6	32
<翌4-30>	Catalyst Support Cycle and Metrics Testing Protocols6	32
<班4-31>	MEA Chemical Stability and Metrics (Test Using an MEA) Testing Protocols 6	33
<班4-32>	Membrane Mechanical Cycle & Metrics (Test Using an MEA) Testing Protocols 6	34
<班4-33>	Membrane 화학적/기계적 Cycle&Metrics (Test Using an MEA)	34
	Polarization Protocol ···································	
<班4-35>	Drive-Cycle Durability Protocol	36
<班4-36>	Unmitigated Start-Up/Shutdown Durability Protocol	37
<班4-37>	MEA Recovery Protocol ···································	38
<班4-38>	Air Compressor Durability Protocol	38
<班4-39>	Humidifier Durability Protocol	39
<班4-40>	주요 Fuel Cell Industry Companies - Fuel Cell Developer6	40
<班4-41>	주요 Fuel Cell Industry Companies - Fuel Cell Components & Testing 6	43
<班4-42>	주요 Fuel Cell Industry Companies - Hydrogen Supplier	46
<班4-43>	주요 Fuel Cell Industry Companies - 기타 Services Provider6	48
<班4-44>	주요 Fuel Cell Industry Companies - Non-Governmental Org6	50
<班4-45>	주요 Fuel Cell Industry Companies - Governmental Org 6	53
<翌4-46>	수소연료전지 Equity & Investment List (2012.09까지)6	54

│. 수소 연료전지와 연료전지 발전산업 개관	41
<그림1-1> 연료전지 단위 Cell의 구조도	···· 51
<그림1-2> 연료전지 Stack의 구조도	···· 53
<그림1-3> Fuel Cell Stack의 구조 및 작동 Process ·······	54
<그림1-4> 연료전지 System의 구성 및 동작	55
<그림1-5> 연료전지 시스템 작동도	56
<그림1-6> 연료전지의 다양한 작동 및 적용 계통도	···· 63
<그림1-7> 연료전지 구성요소 소재개발 로드맵	64
<그림1-8> 연료전지 응용분야 예시	65
<그림1-9> IEA '450 시나리오' 중 그린카 시장 전망	
<그림1-10> PEMFC의 원리 및 작동 ·····	69
<그림1-11> Polymer Electrolyte Membrane(PEM) 연료전지 작동 개념 및 과정	···· 70
<그림1-12> Ballard-PEM fuel cell 의 구조/부품/기능 ·····	···· 71
<그림1-13> Ballard PEM fuel cell 의 작동 Process ·····	···· 72
<그림1-14> AFCC-Fuel Cell의 구조와 작동 ·····	
<그림1-15> PEMFC 시스템의 공급망 ·····	
<그림1-16> DMFC의 원리 및 작동 ·····	
<그림1-17> SOFC의 원리 및 작동 ······	
<그림1-18> AFC의 원리 및 작동 개념	
<그림1-19> MCFC의 원리 및 작동 개념	
<그림1-20> PAFC의 원리 및 작동 개념	
<그림1-21> 가정용 연료전지 시스템	83
<그림1-22> 한국에너지기술연구원의 가정용 1kW 연료전지 시스템 Hy-Cogen	
<그림1-23> 수소연료전지의 Power to Gas (P2G) 유용성	
<그림1-24> 1차에너지 소모량 비교 예: 중앙 집중식 발전 vs 분산 발전	90
<그림1-25> 발전용 연료전지 업체 및 제품군 (글로벌, 2015년)	
<그림1-26> 주택용 연료전지 시스템 구성도	
<그림1-27> 연료전지 발전시스템 개념도/구조도	
<그림1-28> 연료전지발전 수익구조	
<그림1-29> 연료전지발전 수익 변화	··· 105

Ⅱ. 해외 주요국 발전용 연료전지 관련 정책/실증/산업 동향 ……………115

<그림2-1> Hydrogen Production R&D Funding ·····	· 116
<그림2-2> Hydrogen Delivery R&D Funding ·····	· 116
<그림2-3> Hydrogen Storage R&D Funding ·····	· 116
<그림2-4> Fuel Cell R&D Funding ·····	
<그림2-5> Manufacturing R&D Funding ·····	· 117
<그림2-6> Technology Validation R&D Funding ······	· 117
<그림2-7> Safety, Codes and Standards R&D Funding	· 118
<그림2-8> Systems Analysis R&D Funding ······	· 118
<그림2-9> Market Transformation R&D Funding	· 118
<그림2-10> Stationary and/or Forklift Power Generation 사용 Base, US States(Blue) ····	• 144
<그림2-11> 미국 연료전지 특허의 주별 분포도	· 156
<그림2-12> California의 고정형 연료전지 설치장소 Map (2016.05) ·······	· 164
<그림2-13> Community Clean Energy Resiliency Initiative Project ······	• 171
<그림2-14> Connecticut 주의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities …	· 179
<그림2-15> Connecticut 주의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities …	· 180
<그림2-16> Maine주의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities	· 183
<그림2-17> Maine주의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities	· 184
<그림2-18> Massachusetts주의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities …	· 187
<그림2-19> Massachusetts주의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities ·	188
<그림2-20> New Hampshire 州의 잠재적인 고정형 수소/연료전지 설치장소-공공시설…	· 191
<그림2-21> New Hampshire 州의 잠재적인 고정형 수소/연료전지 설치장소-민간시설…	192
<그림2-22> New Jersey 州의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities	· 195
<그림2-23> New Jersey 州의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities	· 196
<그림2-24> New York 州의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities …	199
<그림2-25> New York 州의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities …	200
<그림2-26> Rhode Island 州의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities …	· 203
<그림2-27> Rhode Island 州의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities …	· 204
<그림2-28> Vermont 州의 잠재적인 고정형 수소/연료전지 설치장소-Public Facilities …	· 207
<그림2-29> Vermont 州의 잠재적인 고정형 수소/연료전지 설치장소-Private Facilities …	· 208
<그림2-30> Techno-Economic Analysis Guides Fuel Cells R&D Portfolio	· 278
<그림2-31> 유럽의 Strategic Energy Technology Plan (SET-Plan) ········	· 286
<그림2-32> 유럽시장 주요 4개국의 Emissions 현황과 추이 전망	· 287
<그림2-33> 주요 시장 분석 결과	· 288
<그림2-34> 유럽시장 주요 4개국의 Energy Prices 현황과 추이 전망	· 289
<그림2-35> Electricity/Gas Price와 Spark Spread 분석 (2003-2050) ·······	· 289
<그림2-36> 적용분야별 발전용 연료전지 상업화 투자지원을 위한 잠재적인 Framework …	· 292
<그림2-37> 독일 주택용 mCHP 기술별 난방비용 단계적 변화 전망	· 295

<그림2-38>	단독주택 발전용 연료전지 시장규모 현황(2012) 및 전망(2030)297	
<그림2-39>	영국 Apart. Building용 CHP 기술별 난방비용 단계적 변화 전망 299	
<그림2-40>	Apartment Buildings 발전용 연료전지 시장규모 현황(2012) 및 전망(2030) … 301	
<그림2-41>	비주거용 건물 발전용 연료전지 시장규모 및 전망(2030)302	
<그림2-42>	산업 분야의 총 설치용량과 발전용 연료전지 시장 전망305	
<그림2-43>	연료전지 적용의 우선순위 산업분야306	
<그림2-44>	Data centres용 분산발전 장치 시장구조 및 설치용량308	
<그림2-45>	주요 국가별 전력공급 신뢰성(SAIDI) 정도 비교308	
<그림2-46>	제약/화학 산업용 분산발전 장치 설치용량 (2014년, MWel) ···················309	
<그림2-47>	대형 양조산업용 전력소모량 추산 및 발전장치 설치용량309	
<그림2-48>	Biogas 생산 WWTP 및 발전장치 설치용량 추산310	
<그림2-49>	mCHP에 통합된 연료전지의 Cost Profile [EUR]312	
<그림2-50>	소규모 주거건물용 mCHP에 통합된 연료전지의 Cost Profile [EUR]315	
<그림2-51>	중형 CHP에 통합된 연료전지의 Cost Profile [EUR]317	
<그림2-52>	산업용 연료전지 발전장치에 통합된 연료전지의 Cost Profile [EUR]319	
<그림2-53>	산업용 천연가스-CHP, 연료전지의 Cost Profile [EUR]322	
<그림2-54>	산업용 Biogas-CHP, 연료전지의 Cost Profile [EUR] ·············325	
<그림2-55>	유럽에서의 발전용 연료전지 시장 확산 가능 경로별 전망331	
<그림2-56>	표준 FC micro-CHP의 설치 구성도342	
<그림2-57>	Smart Grid System에서 FC micro-CHP의 역할343	
<그림2-58>	설치 대상 건물의 Property Type ····································	
<그림2-59>	설치 대상 가구의 거주자 구성344	
<그림2-60>	고용 상태	
<그림2-61>	전체 가구 수입	
<그림2-62>	주택 내 실내온도 목표345	
<그림2-63>	현재 사용 중인 Heating type346	
<그림2-64>	설치된 Fuel Cell Type & FCmCHP system 설치 시간(일)348	
<그림2-65>	FCmCHP system 설치 시간 ························349	
<그림2-66>	FP7하에서 진행 중이거나 계획된 자금 분배 (Application 분야별)	
<그림2-67>	일본정부의 수소사회 실현 계획	
<그림2-68>	발전용 연료전지의 에너지 절약 및 CO2 배출량 절감효과 374	
<그림2-69>	Ene-Farm System 구조도 374	
<그림2-70>	공동주택용 Ene-Farm System ····································	
	태양광 발전에 대한 투자회수기간 수용 곡선	
	Ene-Farm 가격/대수 추이	
<그림2-73>	주택용 연료전지의 구성부품별 가격구조379	
<그림2-74>	경비절감을 지원하는 새로운 보조금 제도	

<그림2-75> 연료전지의 가격 절감 로드맵	380
<그림2-76> 주택용 연료전지 설치 현황	382
<그림2-77> 주택용 연료전지의 글로벌 시장 전망	384
<그림2-78> 후지 전기 인산 형 연료 전지의 도입 상황	387
<그림2-79> 업무/산업용 연료전지 System 세계 시장전망	387
<그림2-80> 수소타운 구조도	391
<그림2-81> Osaka Gas의 ENE-FARM Type S를 활용한 e-Prosumer 사업	392
Ⅲ. 해외 연료전지 관련 사업 참여업체 사업전략 ⋯⋯⋯⋯⋯⋯⋯⋯	395
<그림3-1> Backup Power용 장치별 Total Cost of Ownership (TCO) 비교	397
<그림3-2> Mobile Systems - Light Trailer, COWS, SOWS	
<그림3-3> 개질기 통합 Engine 구조 ···································	
<그림3-4> Uninterruptible Power Module (UPM)의 작동 개념도	408
<그림3-5> Uninterruptible Power Module (UPM)의 외관(백색 점선) ········	
<그림3-6> Bloom Energy Server의 구성 ······	···· 410
<그림3-7> Sample Bloom Energy Mission Critical Topology	···· 411
<그림3-8> Total Cost of Reliable Power (Nominal \$) ·····	
<그림3-9> DFC Stack의 구조 및 작동	430
<그림3-10> DFC Power Planr의 구성 및 작동	
<그림3-11> DFC Carbon Capture Concept	
<그림3-12> System Diagram 비교 ·····	
<그림3-13> Tri-generation fuel cell power plants 구성 및 작동	434
<그림3-14> DFC300 system의 구조 및 제원	434
<그림3-15> DFC1500 system의 구조 및 제원	435
<그림3-16> DFC1500 system의 구조 및 제원	···· 436
<그림3-17> GEI HTPEM Schematic ······	440
<그림3-18> GEI HIGH TEMPERATURE PEM MEMBRANES AND FUEL CELL STACKS	··· 441
<그림3-19> GEI COOL STEAM REFORMING ······	···· 442
<그림3-20> HT-PEM Vs. LT-PEM Steam Reforming (w/Ultra Low Sulfur Diesel Fuel)	443
<그림3-21> Methane Reforming Flow % vs. Temperature	···· 443
<그림3-22> P2G용 Multi megawatt electrolyser System ······	
<그림3-23> 1MW SOFC System 구성도	
<그림3-24> Integrated Planar (IP) SOFC ·····	458
<그림3-25> LGFCS의 IST(Integrated String Test) Scedule ······	
<그림3-26> WATT Fuel Cell Stack & Hybrid System 개념도	
<그림3-27> FlowCath®의 구성 및 작동	
<그림3-28> FlowCath® stack 구성 및 Instant response	···· 481

<그림3-29>	FlowCath® stack 내구성 (Automotive/Stationary) 비교	482
<그림3-30>	대량생산 시장의 연료전지 가격 예측 및 FlowCath® Stack의 절감비용	482
<그림3-31>	AFC 산업용 대용량 설비	485
<그림3-32>	AFC에너지의 스택 부품 구성도	485
<그림3-33>	Ceres Steel Cell 의 작동 개요 및 개념도 ·····	491
<그림3-34>	가정용 mCHP 개요 및 구조도	493
<그림3-35>	FCgen#-H2PM System Diagram ····	496
<그림3-36>	Electro의 Hybrid Energy Storage Systems (HyESS) 개념도	498
	Genport의 Hybrid Fuel Cell Technology 개념도	
<그림3-38>	Air Cooled(AC) Fuel Cell Solutions	506
<그림3-39>	Evaporatively Cooled (EC) Fuel Cell Solutions	506
<그림3-40>	Nedstack Standard Product Range & Typical Applications	513
<그림3-41>	XXL stacks의 20,000시간 동안의 Performance data	514
<그림3-42>	HT PEM의 CO 함량에 따른 MEA Voltage/Current 성능 변화	520
<그림3-43>	HT-PEMFC의 회로도 ······	520
<그림3-44>	H3 2500 / H3 5000 Methanol Power System ·····	520
	Reformed Methanol System 구성 및 작동 개념도 ·····	
<그림3-46>	Methanol reforming Diagram ·····	522
<그림3-47>	SerEnergy의 Methanol based Energy System Vision	523
<그림3-48>	SFC에너지의 EFOY Solutions 개념도	525
	SOLIDpower mCHP의 Energy Balance @ 발전출력 1.5 kW	
	SOLIDpower mCHP의 설치 모습 ·····	
<그림3-51>	Sunfire의 Off-grid power Applications 개요도	537
	Sunfire의 Cogeneration in public facilities (CHP Unit) 개요도	
<그림3-53>	Sunfire의 Industrial Hydrogen 생산- Electrolysis ······	538
	Sunfire의 Power-to-Liquids ·····	
	Horizon Fuel Cell의 제품 개발 연혁 ·····	
	MHPS의 Tubular type SOFC ······	
	MHPS의 SOFC 발전소 R&D 개념 ·····	
	MHPS의 RD&D Road Map ·····	
	Ene-Farm의 Reforming System ·····	
	일본 내 Panasonic Enefarm 설치 가능한 지역 가스회사 (2016.06) ·········	
	Toshiba의 일본 Hydrogen Technology 시장 전망	
<그림3-62>	Toshiba의 Hydrogen Energy Technologies (Total Solution) ····································	568

IV. 부록 ------603