목 차

I. VR/AR 최신 산업동향과 기술 및 적용사례 분석	9 3
. 몰입기술 개요	39
1) 개념	39
2) 2019년 기관별 전망······	41
(1) 가트너(Gartner)······	41
1.1) 2019년 10대 전략 기술 트렌드	41
1.2) 몰입 경험(Immersive Experience)·····	41
(2) 델 테크놀로지스(Dell Technologies)······	44
2. 가상현실(VR) 시장 / 기술현황 및 적용사례	46
1) 개요	46
(1) 개념 및 발전 과정·····	46
1.1) 개념	46
1.2) 발전 과정	47
(2) 응용 분야	48
(3) 기술분류 체계 및 단계	50
3.1) 기술분류 체계	50
3.1.1) Milgram 프레임워크	50
3.1.2) 통합 기술분류 체계	50
3.2) 기술 단계	51
(4) 몰입형 VR의 특징 ·······	53
(5) 시장전망	56
5.1) 핵심 이슈	56
5.2) 미래 전망	56
2) 국내외 시장현황 및 전망	58
(1) 국내	58
1.1) 시장규모 및 전망	58
1.2) HW 시장규모 및 전망	58
(2) 국외	59
2.1) VR/AR 분야 시장규모 및 전망	59
2.2) HW/SW 시장규모 및 전망	59
2.3) SW 시장규모 및 전망	60
3) 사어도햔 및 경쟁려 보서	61

(1) 4차 산업혁명과 VR·······6	1
(2) C-P-N-D 생태계 현황 분석·······63	3
2.1) 개요 63	3
2.2) 부문별 생태계 현황64	4
2.2.1) Contents 64	4
2.2.2) Platform 65	5
2.2.3) Network	6
a) 개요 ···································	6
b) VR/AR 모바일 데이터 트래픽 67	7
c) 몰입형 5G 통신 서비스·······68	8
d) 주요 플레이어7(0
2.2.4) Device7	1
a) 개요 ······ 7	1
b) 시장 현황7	1
c) 주요 플레이어72	2
(3) 산업 경쟁력 분석74	4
3.1) 국내 산업 경쟁력 74	4
3.2) 부문별 산업 경쟁력74	4
(4) 국내외 관련 정책 및 지원동향71	7
4.1) 국내 ······ 77	7
4.2) 국외	9
(5) 주요 기업별 투자 및 개발현황8	1
4) 기술현황 및 주요 개발동향	5
(1) 기술 개요 및 현황 8년	5
1.1) 개요	5
1.2) 핵심 기술현황85	5
1.2.1) 오감 기술 ~~~~~ 85	5
1.2.2) 모션 트래킹 기술 ~~~~~ 80	6
(2) 하드웨어 및 소프트웨어 개발동향88	8
2.1) HW 디바이스 개발 동향88	8
2.1.1) VR Headset	8
a) 스마트폰용 VR Headset 88	8
b) Standalone VR Headset ······ 88	8
c) Tetheres VR Headset89	9
d) PC/Console VR Headset 90	0
2.1.2) VR Treadmill 90	0

		2.1.3) 360 VR Camera	92
	2.2) SW 및 SDK 개발동향·······	93
5)	응용 분이	۴별 최신사례 (VR 적용)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	94
	(1) 교육		94
	1.1)	중국	94
		1.1.1) 베이징 학교	94
	1.2)	일본	95
		1.2.1) 카가와 대학	95
		1.2.2) 드완고(DWANGO)	96
		1.2.3) 디스커버리 프로그램	97
	1.3)	기타	97
		1.3.1) Open Heritage Project·····	. 97
	(2) 훈련		. 99
	2.1)	우주선 조종 훈련 VR	99
	2.2) 선박 디젤엔진 훈련 VR	100
	2.3) 크레인 업체의 VR 안전 교육	100
	2.4) 용접 훈련을 위한 VR 시뮬레이터	101
	2.5) 육아 훈련을 위한 VR 콘텐츠	102
	(3) 의료		103
	3.1)	PTSD 치료에 활용된 VR······	103
		3.1.1) Virtually Better	103
		3.1.2) University of Southern California	103
	3.2) 자폐증 치료에 활용된 VR	104
		3.2.1) Autism Speaks·····	104
		3.2.2) University of Haifa	105
	3.3) 고도 근시 개선에 사용된 VR	106
	3.4) 시각 장애인을 위한 VR	107
	3.5) 뇌졸중 환자의 재활을 돕는 VR······	108
	(4) 비즈	니스	110
	4.1)	VR 재무관리 콘텐츠	110
	4.2)VR 프로그램을 제공하는 보험사······	110
	4.3) VR을 활용한 원격 회의와 업무	112
	4.4) MR을 도입한 항공업계 ······	112
	4.5) VR 서비스를 도입한 관광협회	113
	(5) 5G외	VR	115
	5.1)	노키아(Nokia)	115

5.2) 오렌지(Orange)·······	116
5.3) 국내 이동통신 3사	116
5.3.1) SK텔레콤 ······	116
5.3.2) KT	118
5.3.3) LG유플러스	119
3. 증강현실(AR) 시장 / 기술현황 및 적용사례 ·······	121
1) 개요	121
(1) 개념 ·····	121
(2) 발전과정 및 역사	123
(3) 가상현실과의 차이점	126
(4) 구현 시스템 3요소	128
2) 기술 개요 및 유형 분류	129
(1) 기술 개요	129
(2) 핵심 기술현황······	130
(3) 기반 기술 발전동향······	132
(4) 하드웨어 유형 분류	134
4.1) 데스크탑 증강현실	134
4.2) 모바일 증강현실	135
4.2.1) 분류	135
4.2.2) 플랫폼 현황	137
4.2.3) 기술 내용	137
4.2.4) 단점 및 극복 방안	138
4.3) 프로젝션 증강현실	139
(5) 적용분야	141
3) 시장현황 및 전망	142
(1) 시장 특성	142
1.1) Value Chain·····	142
1.2) 특성	142
1.2.1) 시장 특징	142
1.2.2) 시장 전망	143
(2) 시장규모 및 전망······	145
2.1) 국내외 시장규모 및 전망	145
2.1.1) 국내	145
2.1.2) 국외	145
2.2) 지역별 시장규모 및 전망	146
2.3) 용도별 시장규모 및 전망	147

2.4) 제공 방식별 시장규모 및 전망	147
2.5) HW 구성요소별 시장규모 및 전망······	148
2.6) 콘텐츠 분야 시장규모 및 전망	149
2.6.1) 글로벌 콘텐츠 분야	149
2.6.2) 국내 서비스용 콘텐츠 분야	149
2.7) Device 종류별 시장규모 및 전망	149
4) 산업동향 및 융합사례 분석	151
(1) 생태계 부문별 성장 장애요인 및 전망	151
1.1) 디바이스	151
1.1.1) 주요 장애요인	151
1.1.2) 유망 아이템	152
1.2) 플랫폼	154
1.3) 콘텐츠/소프트웨어	156
(2) 글로벌 주요 기업동향	157
2.1) Google ·····	157
2.2) Microsoft·····	158
2.2.1) HoloLens	158
2.2.2) HoloLens2 ······	159
2.3) PTC	161
2.4) Blippar	162
2.5) Wikitude ······	163
(3) 산업용 AR 기술 적용동향 및 혁신사례······	165
3.1) Industrial AR 동향 ······	165
3.2) 도입 기간	166
3.3) AR 기반 제조업 혁신사례 ······	167
3.3.1) Lockheed Martin ······	167
3.3.2) Boeing	168
3.3.3) BMW	
3.3.4) GE	169
3.3.5) 전자부품연구원	
3.4) AR 활용 생산실적 인식 자동화 사례 ······	171
(4) 인공지능 기반 AR 기술동향 및 전망·······	173
4.1) 기술 개요	
4.1.1) 기존 평면인식 기술	
4.1.2) AI 기반 증강현실	
4.2) 활용 분야	174

4.3) 플랫폼 기술	175
4.3.1) Al engine······	175
4.3.2) AR engine	176
4.4) 주요 핵심 기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	176
4.4.1) 3차원 손 추적	176
4.4.2) 3차원 얼굴 추적	177
4.4.3) 조명 변환	178
4.4.4) 배경 치환	179
4.4.5) 가상 렌즈 착용	179
4. VR/AR 미래 기술 발전방향 및 전망	180
1) 기술 발전 방향	180
2) 미래 기술 부문별 전망 및 사례	181
(1) 혼합현실	181
(2) 오감 기술	183
2.1) 시각 ·····	183
2.2) 촉각 ·····	184
2.3) 청각	185
2.4) 후각/미각	
(3) 동적 기술	
3.1) 모션 트랙킹/3D 스캔 기술 ···································	189
3.2) 동작인식 기술	
3.3) 사용자 경험(UX)	
(4) 다중 사용자 환경 기술	
3) VR/AR의 향후 전망·······	193
	193
1.1) 개념	
1.2) 특징	
1.2.1) 현실과 가상의 이음매 없는 3차원 연결	
1.2.2) 사실적 오감 증강	
1.2.3) 실시간 양방향 상호작용	
(2) Context-aware Augmented Reality	
(3) Augmented Human ·······	
3.1) 개념	
3.2) 기술현황	
3.2.1) 사용자 맥락인지	
3.2.2) 실시간 사용자 위치/관심 객체 인식	200

3.2.3) 3차원 실감증강 20	1
3.2.4) 새로운 상호작용 인터페이스 202	2
3.3) 인간 중심 UI/UX를 접목한 AR 기술 기반 시나리오 20%	2
3.3.1) 개요 202	2
3.3.2) 미래 시나리오 20%	3
Ⅱ. MR/XR 국내외 기술동향 및 실감미디어 시대 전망····································	0 2
1. 혼합현실(MR) 산업분석 및 기술 트렌드 동향······· 209	9
1) 개요 209	•
(1) 개념 209)
(2) VR/AR과의 차이점 ·······21	1
(3) 기술 분야21	3
(4) 활용 분야215	5
2) 시장현황 및 전망	5
(1) 시장규모 및 전망 210	5
(2) UX 미래 전망······ 210	5
3) 국내외 산업 추진동향	3
(1) 국내 218	3
1.1) 산업 경쟁력218	3
1.2) 추진 동향219)
1.2.1) 비빔블 220)
1.2.2) 닷밀 22	1
1.2.3) SK텔 레콤 ···································	2
1.2.4) 삼성전자 223	3
1.2.5) 농촌진흥청 224	4
1.3) 기술개발 동향 225	
1.3.1) 디스플레이 디바이스 기술 22.	
1.3.2) 응용기술 및 콘텐츠 기술22	
1.4) 기술 경쟁력226	3
(2) 국외 229)
2.1) 산업 경쟁력229	
2.2) 추진 동향 230)
2.2.1) Microsoft	1
a) 홀로렌즈 ········23	1
b) 윈도 MR·······233	3

c) 리모트 어시스트····································
2.2.2) Magic Leap235
a) Phptonics Chip235
b) Magic Leap One 236
2.2.3) Ford 236
2.2.4) BMW 237
2.2.5) Thyssenkrupp 237
2.2.6) Softbank
2.2.7) 기타 239
4) MR 기반 산업용 협업 지원시스템241
(1) 개념 241
(2) 필요성 및 산업동향243
2.1) 생산환경 고도화 243
2.2) 4차 산업혁명 244
2.3) 산업 안전인증 대응244
2.4) 장비/시설 유지관리 응용서비스246
2.5) MR 활용을 통한 제조공정별 고도화246
2.6) MR 응합 Smart Factory······ 246
(3) 관련 기술동향 249
3.1) 주요 기술동향 249
3.1.1) 디바이스 기술 249
3.1.2) 인식 및 데이터 처리 SW 기술 ······ 250
3.1.3) 플랫폼 기술 ······ 251
3.1.4) 콘텐츠 기술 252
3.2) 기술 로드맵
5) 기술 트렌드 및 동향255
(1) 기술 트렌드 255
(2) 세부 기술 내용 ~~~~ 258
(3) 표준화 동향 259
3.1) 국제 표준화 동향259
3.2) 관련 중요 국제 표준화 추진 현황 260
3.2.1) MAR 참조모델 표준 ······· 260
3.2.2) MAR 라이브 행동자와 실체 표현 모델 표준 261
3.2.3) MAR 센서 표현 모델 표준 262
3.2.4) MAR을 위한 벤치마킹 표준262
2. 확장현실(XR) 개념 및 기술현황 263

1) 개요 265	3
(1) 발전 과정 및 개념26:	3
(2) 활용 분야 26:	5
2) XR 구현을 위한 기술요소 및 현황······ 26	7
(1) 핵심 구성 기술 26	7
1.1) 컴퓨터 그래픽 기술26	7
1.2) PPI / PPD	7
1.3) VR 구현을 위한 6 DoF 기술26	8
(2) 주요 기술동향26	9
(3) XR 기술의 주요 도전 과제 ······ 27	2
3.1) 디스플레이27	2
3.2) 공통 조명 27	2
3.3) 모션 트래킹 27	3
3.4) 전력 및 발열 275	3
3.5) 연결성27-	4
(4) XR의 문제점 및 개선 포인트······ 27:	5
4.1) 개요 27:	5
4.2) 시야각 문제 270	6
4.3) VR 멀미 문제 및 맞춤형 초점 디스플레이 ······ 27	7
3. 실감미디어를 통한 산업변화 및 전망 275	8
1) 실감미디어 개요 27	8
(1) 개념 ······ 278	8
(2) 특성 27	9
2.1) 개요 27	9
2.2) 특성 27	9
2.2.1) 실재감 ······ 27	9
2.2.2) 상호작용 280	0
(3) 실감미디어와 몰입기술 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
2) 실감형 콘텐츠 시장동향 및 전망·······28-	4
(1) 기술수준 및 경쟁력284	4
(2) 국내외 시장규모 및 전망 2.8년	6
2.1) 국내 28년	6
2.1.1) 실감콘텐츠 시장규모 및 전망286	6
2.1.2) 인터랙션 기반 실감콘텐츠 시장규모 및 전망 28년	6
2.2) 국외 28	7
2.2.1) 실감콘텐츠 시장규모 및 전망 28	7

2.2.2) 인터랙션 기반 실감콘텐츠 시장규모 및 전망	···· 287
(3) 주요 정책동향	289
3.1) 주요 분야별 정책동향	289
3.2) 주요국 정책동향~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	289
3) 5G 이동통신 시대의 실감미디어	···· 291
(1) 5G 개요 및 산업동향······	···· 291
1.1) 개요	···· 291
1.1.1) 정의	291
1.1.2) 특징	291
1.1.3) 기술 범위	293
1.2) 기술 파급력	295
1.3) 주요국 상용화 및 경쟁동향	···· 296
1.4) 주요 플레이어 추진동향	299
(2) 4차 산업혁명과 5G의 사회경제적 가치·······	301
2.1) 사회경제적 가치	301
2.2) 미디어 산업	302
2.2.1) 산업 현황	302
2.2.2) 사회경제적 가치	303
(3) 5G 네트워크와 실감미디어	····· 304
3.1) 실감미디어 서비스에 필요한 5G의 특성	304
3.1.1) 초고속	305
3.1.2) 초저지연	305
3.2) 5G로 인한 실감형 콘텐츠 신규 Biz 기회	306
3.2.1) 실감형 클라우드 게임	306
3.2.2) 실감형 광고	308
3.3) 국내 관련 프로젝트 추진현황	308
(4) 5G로 변화될 실감미디어 미래상······	311
4.1) 개요	
4.2) 주요 영역별 변화 전망	
4.2.1) 미디어/엔터테인먼트 영역	
4.2.2) 교육/훈련 영역	
4.2.3) 커머스/헬스케어 영역	315
4.2.4) 일상업무 영역	316

1. ICT와 VR/AR 🖯	유합 기술동향·····	·· 319
1) 사물인터	넷 (loT) ······	·· 320
(1) IoT :	개요	320
1.1)	개념	320
1.2) 목적 ·····	·· 320
1.3) 요소 및 가능 요인	·· 321
(2) 4차	산업혁명과 IoT	322
2.1) 파급 효과	. 322
2.2	2) 진화 방향	322
2.3	3) loT가 기업에 가져오는 기회	· 324
(3) IoT♀	♪ VR/AR 융합 기술동향⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	. 326
3.1) 필요성	- 326
3.2	2) loT 분야별 VR/AR 융합사례	·· 326
	3.2.1) 스마트홈	·· 326
	a) 와세다 대학 ······	- 327
	b) 한국전자통신연구원(ETRI)	327
	3.2.2) 산업	. 328
	a) 슈나이더 일렉트릭(Schneider Electric)·····	· 328
	b) 지멘스(Siemens)······	329
	c) PTC-씽웍스(ThingWorx)······	··· 331
	d) KETI	332
2) 인공지능	(AI)	· 334
(1) 인공	지능 개요	·· 334
1.1)	개념	·· 334
1.2) 분류 ·····	·· 335
1.3) 기술현황	· 335
(2) 선도	. 업체별 인공지능과 VR/AR 융합사례	·· 337
2.1) 유니티(Unity)·····	· 337
	2.1.1) ML 에이전트	·· 337
	2.1.2) 적용사례	338
2.2	2) 페이스북(Facebook)······	338
	2.2.1) AR 분야	. 338
	2.2.2) AI 분야 ······	339
2.3	3) 퀼컴(Qualcomm)······	. 340
	2.3.1) XR1 플랫폼 ······	. 340
(3) 응 힙	유망분야: Neuromorphic chip······	. 343

3.1) 개요	343
3.1.1) 개념	343
3.1.2) 부상 배경	343
a) 무어의 법칙의 물리적 한계······	343
b) 폰 노이만 구조 vs. 뉴로모픽 칩 ·············	344
c) ANN과 Neuromorphic······	345
3.1.3) 특징	346
3.1.4) 활용 영역	346
3.2) 뉴로모픽 칩과 VR/AR의 융합 개요	347
3.3) 주요 R&D 동향	349
3.3.1) IBM	349
3.3.2) 인텔(Intel)	350
3.3.3) 퀼컴(Qualcomm)·······	351
3.3.4) 네페스(Nepes)······	352
a) NM500	352
b) 기존 Computing Chip과의 비교 ·······	353
c) NM500과 Edge Computing·····	354
3.3.5) 기타	355
2. 몰입경험 제공을 위한 VR/AR 오디오 기술동향	356
1) Binaural Hearing(Binaural Audio)	356
(1) 바이노럴(Binaural)	356
(2) 수평/수직/거리별 단서(Cue)······	358
2.1) 바이노럴 큐(Binaural Cue)·····	358
2.2) 모노럴 큐(Monaural Cue)······	359
2.3) 직접음/잔향음의 DRR······	359
2) Binaural Recording vs. Binaural Rendering ·····	361
(1) 바이노럴 레코딩(Binaural Recording)·····	361
(2) 바이노럴 렌더링(Binaural Rendering)······	363
(3) 마이크로폰 어레이를 이용한 레코딩 방식	365
3) VR/AR 사용자 자유도	366
(1) 6DoF	366
(2) 3DoF	368
4) 오디오 포맷	370
(1) 개요	370
(2) 주요 오디오 포맷별 특성	372
2.1) 채널 포맷	372

2.1.1) 개요	372
2.1.2) 대표 서비스 현황	372
2.2) 앰비소닉스 포맷	373
2.2.1) 개요	373
2.2.2) 특성	374
2.3) 객체 포맷	375
2.3.1) 개요	375
2.3.2) 특성	377
5) VR/AR 오디오 제작 SW·······	378
3. 몰입기술을 위한 디지털 홀로그래피 기술동향	379
1) 개요	379
(1) 기술 장점	379
1.]) 기존 기술의 한계	379
1.2) 기술 개념 및 장점	380
(2) 기술 분류 (382
(3) 디스플레이 구현을 위한 주요 고려사항	383
3.1) SLM의 SBP 문제개선····································	383
3.2) 대응 방안	385
2) 디지털 홀로그래픽 기술의 최근 연구동향~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	386
(1) 시야창 방식의 디지털 홀로그래픽 디스플레이 시스템	386
1.1) 독일 SeeReal··································	386
1.2) 국내 ETRI	387
(2) 다중화 기술 관련 디지털 홀로그래픽 시스템·······	389
2.1) 다중화 기술을 적용한 디지털 홀로그래픽 시스템	389
2.1.1) 영국 캠브리지 대학교 (389
2.1.2) 일본 동경농공대학교	390
2.1.3) 국내 ETRI······· (390
a) 단색 360도 디지털 홀로그래픽 디스플레이 시스템…;	390
b) 4.5인치급 컬러 디지털 홀로그래픽 디스플레이 시스템·	391
2.2) 다중화 방법 없이 구현한 디지털 홀로그래픽 시스템	392
2.2.1) 일본 Utsunomia 대학교····································	392
2.2.2) 일본 Chiba 대학교····································	393
2.2.3) 국내 KAIST	393
(3) 홀로그래픽 광학 소자(HOE) 기술 응용연구 ······	395
3.1) 미국 Microsoft	395
3.2) 미국 아리조나대학교(396

3.3) 국내 인하대학교	397
3.4) 국내 KIST····································	397
(4) 컴퓨터 생성 홀로그램(CGH) 연산 가속화 연구 ·····	398
4.1) FPGA 개요 ···································	398
4.1.1) 개념	398
4.1.2) 3가지 장점	399
4.1.3) 주요 어플리케이션	399
4.1.4) AI의 요구성능과 FPGA······	··· 401
4.2) FPGA 전용 H/W 개발 현황	·· 402
4.2.1) 일본 Chiba 대학교·······	··· 402
4.2.2) 국내 삼성전자	·· 404
4.3) 고속 CGH 연산기술 전망·······	·· 405
4.3.1) 기술확보 필요성	·· 405
4.3.2) Real-time CGH 실현 가능성 ······	·· 405
(5) AR/MR 접목 가능한 홀로그래피 응용기술······	·· 406
5.1) HOE를 적용한 AR/MR 디바이스 개요	·· 406
5.2) 최근 연구사례	·· 407
5.2.1) 독일 SeeReal Technologies·····	·· 407
5.2.2) 일본 정보통신연구기구(NICT)	·· 409
5.2.3) 국내 서울대학교	··· 409
a) 개요 ···································	··· 409
b) AR& see-through metalens······	··· 410
4. 몰입형 VR/AR을 위한 햅틱스 기술	··· 412
1) 개요	
(1) 햅틱스(Haptics) 기술 ···································	··· 412
(2) 햅틱 디바이스(Haptic Device)······	413
(3) 햅틱 렌더링(Haptic Rendering)······	
2) 햅틱 디바이스를 사용한 VR/AR 렌더링 현황····································	
(1) 햅틱 디바이스별 VR 렌더링	
1.1) 근감각 햅틱 디바이스	
1.1.1) 디바이스 개요	
1.1.2) Rendering 과정	
1.1.3) 지원 라이브러리 사례	
1.1.4) VR 응용 분야	
1.2) 피부 감각 햅틱 디바이스	
1.2.1) 디바이스 개요	··· 418

1.2.2) VR에서의 활용도	419
a) 충돌감 전달······	
b) 추상적 정보전달······	
1.3) 햅틱 디바이스를 사용한 VR 렌더링 사례	
(2) 햅틱 AR 기술 및 전망·······	
2.1) 개요	422
2.1.1) 개념	422
2.1.2) 분류 ·····	423
a) 다중 감각 AR의 분류·······	
b) 가상-실제 혼합의 목적에 따른 분류 ············	423
c) 증강되는 주체 자극의 범위에 따른 분류	424
2.2) 기술적 구성요소	425
2.2.1) 3가지 구성요소	425
2.2.2) 햅틱 AR 렌더링 알고리즘의 단계 ·····	426
2.2.3) 3가지 전처리 모델링	427
2.3) 향후 전망	428
5. MR을 위한 4D 복원 기술동향 ·······	429
1) 4D 복원 기술 개요······	429
(1) 개념	429
(2) 기술 난이도	429
2) 단일 센서 기반 실시간 4D 복원기술 연구동향·····	431
(1) DynamicFusion······	431
(2) 중국 칭화대학교	433
3) Multi Camera 기반 4D 복원기술 ······	434
(1) 개요	
(2) 주요 연구사례	
2.1) 마이크로소프트	
2.1.1) Stramable Free-Viewpoint	
2.1.2) Fusion4D(Holoportation)	
2.2) 독일 막스플랑크연구소	
2.3) 영국 Surrey 대학교······	
4) 향후 전망	
IV. 부 록······	445
1. VR/AR 산업 실태 및 인식 조사 분석	445
1) 국내 VR 산업 실태조사······	445

(1) 국내 VR 산업의 추진단계·······445
(2) VR 콘텐츠 활성화를 위한 정부 지원분야················· 446
(3) VR 산업의 킬러콘텐츠446
(4) 국내 VR 시장 활성화 저해요인 ·······448
(5) VR 산업 관련 기업이 겪는 어려움························· 449
5.1) R&D 활동 시 겪는 어려움449
5.2) 사업화 및 판매 측면 어려움449
2) 글로벌 AR에 대한 인식 조사·······451
(1) AR/VR 기술 대중화의 장애요인451
(2) AR의 대중화 시기 ······ 452
(3) 개발 중인 AR/VR 플랫폼 유형 ······ 453
3.1) AR 플랫폼 ···································
3.2) VR 플랫폼 ·······453
2. 가트너의 2019년 10대 전략 기술 트렌드
1) 자율 사물(Autonomous Things)456
2) 인공지능 주도 개발(Al-Driven Development)······························· 458
3) 디지털 트윈(Digital Twins)460
4) 자율성을 가진 엣지(Empowered Edge)·······462
5) 몰입 경험(Immersive Experience)464
6) 블록체인(Bolck Chain)466
7) 스마트 공간(Smart Spaces)467
8) 디지털 윤리와 개인정보보호(Digital Ethics and Privacy)469
9) 양자 컴퓨팅(Quantum Computing)470