

│. 고효율 중대형 2차 전지 개요 ···································
1. 2차 전지 개념 및 분류
1-1. 2차 전지 개념
1) 전지(Battery) 개요 ···································
2) 주요 Battery 개발 연혁
3) 2차 전지 개요
(1) 2차 전지의 작동
(2) 2차 전지 주요 구성요소
1-2. 2차 전지 분류 및 주요 기술별 특징
1) Battery를 구분하는 특성 ···································
2) 주요 2차 전지 기술 특성 및 적용
3) Power Source로서의 요구조건
(1) 에너지 저장(Energy storage)51
(2) 에너지 저장 용량(Specific energy)
(3) 응답성(Responsiveness)
(4) 동력 대역(Power Bandwidth)
(5) 작동 환경(Environment)53
(6) 효율성(Efficiency)
(7) 설치(Installation)
(8) 운영비용(Operating cost)
(9) 유지관리(Maintenance)
(10) 사용 시간(Service life)54
(11) 한계온도(Temperature extremes)
(12) 충전시간(Charge time)55
(13) 폐기(Disposal)55
2. Battery Cells & Packs
2-1. Battery Packaging Standards
1) Battery Packaging 기술/표준의 발전
2) Battery Packaging 표준 규격
3) Battery Packaging 표시내용
2–2. Battery Cell Types

Cylindrical Cell58
Button Cell ······ 60
Prismatic Cell61
Pouch Cell 62
Battery Pack의 구성
Battery Pack의 구성 목적 ···································
Battery Pack의 구성 방법 ···································
(1) 단일 셀 구성
(2) 직렬 (Series) 구성
(3) 병렬 (Parallel) 구성
(4) 직/병렬 (Series/parallel) 구성

1. 변화하는 Battery Market Trend	73
1-1. 1차 전지에서 2차 전지로의 시장 변화	··· 73
1-2. 고효율 중대형 2차 전지 수요 증가 추세	··· 75
1) 수요 증가 요인 개략	··· 75
2) LIB 가격하락 및 중대형 LIB 성장	··· 77
(1) LiB의 가격 하락세	··· 77
(2) 중대형-Li-ion Battery의 성장세	80
(3) 2020년 LIB 판매액 기준 시장규모 전망	83
(4) 글로벌 주요 Battery 업체별 LIB 시장점유율 추이	··· 84
3) 글로벌 xEV (친환경차) 시장 확대	88
(1) xEVs 신규 모델 출시 및 가격 인하	89
(2) 국가 보조금 지급 정책 등의 제도적 지원	91
(3) 환경 규제 강화 등의 제도적 장치 강화	··· 94
(4) 급속 충전 방식 통일과 충전소 인프라 확대	95
4) 확대되는 ESS 도입 필요성	··· 97
(1) ESS 도입 확대 지원 배경	··· 97
(2) Li-ion Battery 채용 ESS 증가	99
(3) 각국의 ESS 보급 확대를 위한 제도적 개선	· 100
(4) 글로벌 ESS 시장 전망	· 101
1-3. 한·중·일의 중대형 2차 전지 시장 주도	· 102
1) 한·중·일의 중대형 2차 전지 시장경쟁	· 102
2) 일본: 기술력, 점유율 모두 선도	· 103
3) 중국: 늦은 시작, 가장 빠른 성장	· 103

4) 한국: 기술력과 생산능력 바탕	· 104
1-4. 국내외 에너지관련 주요 정책 동향	· 107
1) 글로벌 에너지관련 주요 Trend	· 107
(1) 신기후체제의 출범으로 인한 인식변화	· 107
(2) 변화된 에너지 기술의 주요 Trend	· 108
2) 국내의 최근 에너지관련 주요 정책 동향	· 110
(1) 2차 국가 에너지기본계획	110
(2) 제2차 녹색성장 5개년 계획	· 111
(3) 기후변화대응 에너지 신산업 창출방안	111
(4) 제4차 신·재생에너지 기본계획	111
(5) 제3차 에너지기술개발계획	112
(6) 제5차 에너지이용 합리화 기본계획	112
(7) 기후변화대응을 위한 핵심기술 개발전략 이행 계획	112
(8) Post-2020 온실가스 감축목표 설정 추진계획	113
(9) 제7차 전력수급계획	113
(10) 2030 에너지 신산업 확산 전략	114
(11) 에너지신산업 성과확산 및 규제개혁 종합대책	114
3) 각국별 최근 에너지관련 주요 정책동향	114
(1) 미국의 에너지관련 주요 정책동향	114
(2) EU의 에너지관련 주요 정책동향	115
(3) 일본의 에너지관련 주요 정책동향	
(4) 중국의 에너지관련 주요 정책동향	116
2. 2차 전지 Applications별 시장 동향 및 전망	. 118
2-1. 주요 중대형 2차 전지 Applications	
1) Traction & Batteries	
2) Aviation & Batteries	
3) Aerospace & Batteries ······	
4) Stationary Batteries	
5) Grid Storage & Batteries	
2-2. 에너지 저장장치 (ESS) 시장	
1) 주요 ESS용 기술 및 제조업체	
(1) 주요 ESS 기술 평가	
(2) 글로벌 주요 Energy Storage Devices 제조업체	
(3) Australia의 대용량 ESS 실증 현황 ······	
(4) ESS의 적용 분야 및 글로벌 설치현황	
2) 국내외 ESS 관련 정책 및 R&D 투자동향	

(1) 국내 ESS 관련 정책 동향
(2) 국내의 ESS 관련 R&D 투자 계획
(3) 각국의 ESS 관련 정책 동향
(4) 각국의 ESS 관련 R&D 투자 계획
3) 국내외 ESS 관련 시장동향
(1) 국내 ESS 관련 시장동향
(2) 글로벌 ESS 관련 시장동향
(3) 미국의 ESS 관련 시장동향
(4) 일본의 ESS 관련 시장동향
(5) 중국 및 기타국가의 ESS 관련 시장동향
(6) ESS 관련 국내 현황 및 계획의 SWOT 분석
2-3. xEVs용 고효율 중대형 2차 전지
1) Electric Powertrain의 등장
(1) 구동용 Battery의 선택
(2) 구동용 Battery의 가격대
2) Hybrid Electric Vehicle (HEV)용 Battery
(1) HEV의 개요 및 목적
(2) HEV용 Battery의 특성
(3) HEV의 Paradox
(4) HEV vs. 1-Liter Car
(5) Plug-in Hybrid Electric Vehicle (PHEV)
3) Electric Vehicle (EV) & Battery
(1) 근래의 EV 동향 ······153
(2) EV용 Battery 동향
(3) EV용 Battery 요구 조건
4) 국내외 xEVs 관련 정책 및 R&D 투자동향
(1) 국내 xEVs 관련 정책 동향
(2) 국내 xEVs 관련 R&D 투자 동향
(3) 글로벌 xEVs 관련 정책 동향
(4) 글로벌 xEVs 관련 R&D 투자 동향
5) 국내외 xEVs 관련 시장동향
(1) 국내 xEVs 관련 시장동향
(2) 글로벌 xEVs 관련 시장동향
(3) 미국 시장에서 판매 중인 xEVs
(4) xEVs 관련 국내 현황 및 계획의 SWOT 분석
3. Li-ion Battery 소재별 시장 현황과 전망

3-1. 다양한 2차 전지용 소재	
1) 금속 소재	
(1) Aluminum ·····	
(2) Antimony (안티몬)	
(3) Cadmium ·····	
(4) Calcium ·····	
(5) Iron (철) ······	
(6) Lead (납, 鉛)	
(7) Manganese (망간) ······	
(8) Nickel	
(9) Silver (銀)	
(10) Sodium (나트륨)	
(11) Tin (주석, 양철)	
(12) Vanadium ·····	
(13) Zinc (아연)	
2) 비금속 소재	
(1) Chloride (염화물)	
(2) Spinel (Rubies, 尖晶石)	
(3) Sulfur (Sulphur, 황) ······	
(4) Titanate (티탄산염) ······	
3) Oxide (산화물)	
3-2. Li-ion Battery용 주요 소재 ······	
1) Lithium ·····	
(1) 리튬에 대한 이해	······ 192
(2) 리튬 화합물	
(3) 리튬의 물리/화학적 속성	
(4) 리튬의 생산 방식 및 생산량	
(5) 리튬의 사용량 증가 추세	
(6) Lithium의 전략적 확보 방안	
2) Cobalt ·····	
(1) Cobalt에 대한 이해	
(2) Cobalt의 물리/화학적 속성	
(3) Cobalt의 생산 및 소모량	
3) Graphite	
(1) Graphite에 대한 이해	
(2) Graphite의 물리/화학적 속성	
(3) Graphite와 Graphene ·······	······ 212

3-3	. LiB 4대 주요 소재 시장 현황과 전망	215
1) LiB의 4대 주요 소재	215
	(1) LIB 주요 소재별 특성 및 적용시기	215
	(2) LIB Cost 원가 분석 및 시장 시나리오	216
2) 구성요소 소재별 시장 동향 및 전망	219
	(1) 양극재(Cathode)	219
	(2) 음극재(Anode)	220
	(3) 분리막(Separator) ······	221
	(4) 전해액(Electrolyte)	222
3) xEVs OEM들의 리튬 확보 경쟁	223
	(1) Toyota ·····	223
	(2) Tesla ·····	224
	(3) BYD	224
4) Big 4의 독점적 Lithium 시장구조 점차 와해	224

1. 2차 전지 기술 성숙도 평가	229
1-1. 기술준비단계 (TRL)	229
1-2. 생산준비단계 (MRL)	230
2. 시장 성숙단계의 2차 전지 기술과 개발 동향	232
2-1. 납축전지 (Lead Acid Battery)	232
1) Flooded Lead Acid Battery	232
(1) 납축전지의 구성 및 관리	234
(2) 자동차 시동용과 ESS용 Deep-cycle 납축전지	235
(3) 납축전지의 장단점	
(4) Lead-Acid Battery Runtime 측정	237
2) Sealed Lead Acid Battery	238
(1) VRLA 전지 ·····	240
(2) AGM VRLA 전지	241
3) ALC Battery	243
2-2. Nickel 계열 Battery	247
1) Ni-Cd Battery ·····	249
2) Ni-MH(니켈수소) Battery	250
3) Nickel-Iron (NiFe) Battery	253
4) Nickel-Zinc (NiZn) Battery	254

5) Nickel-Hydrogen (NiH) Battery	
2-3. Lithium-based 계열 Battery	
1) Lithium-based Battery 개요 ·····	
(1) Lithium-based Battery의 개발	
(2) Lithium-based Battery의 구성 및 성능	
(3) Lithium-based Battery의 장/단점 및 개발동향	
(4) LIB 사용시간과 성능의 최적화	
(5) Lithium-ion Battery의 출력 성능	
(6) Lithium-ion Battery의 안전성	
2) 주요 Lithium-ion Battery Types	
(1) Lithium Cobalt Oxide	
(2) Lithium Manganese Oxide	
(3) Lithium Nickel Manganese Cobalt Oxide	
(4) Lithium Iron Phosphate	
(5) Lithium Nickel Cobalt Aluminum Oxide	
(6) Lithium Titanate	
(7) Lithium-ion Polymer Battery	
3) Li-ion Battery Cell 주요 구성요소	
(1) 양극 활물질(Active Materials)	
(2) 음극 활물질(Active Materials)	
(3) 전해질 (Electrolyte) ······	
(4) 분리막 (Seperator) ······	
4) Lithium-ion Battery Pack의 구성	
(1) Li-ion Battery Pack의 구성에 고려할 사항	
(2) Li-ion Battery Pack의 안전승인	
2-4. Smart Battery Pack의 구성	
1) Smart Battery 개념 및 정의	
(1) Smart Battery 개념 ······	
(2) Smart Battery 정의	
(3) Smart battery의 이점 및 한계	
2) Smart battery용 충전기	
3) Smart Battery 구성 및 역할	
(1) Smart Battery의 역할 ······	
(2) Smart Battery Pack의 구성	
(3) Smart Battery & SMBus	
(4) Battery Fuel Gauge	
4) Smart Battery의 Calibration	

(1) Calibration의 필요성 ······	320
(2) Calibration 방법 및 효과	321
(3) Max Error ·····	323
(4) SMBus system의 알림 내용	323
3. 시장 진입단계의 2차 전지 기술과 개발 동향	
3-1. Niche Markets & Alternate/Semi-Batteries	
1) Alternate/Semi-Batteries 개요 ·····	
2) Sodium Batteries ·····	
(1) Sodium-Sulfur Battery	
(2) Sodium-Nickel- Chloride (Na-NiCl2) Battery	
(3) Sodium-ion Analogue Battery	
(4) 나트륨 용융염 Battery	
3) Metal - Air Battery	
4) Silver-zinc (1차 & 2차)	
5) Reusable Alkaline	
6) Flow Battery	
(1) Flow Battery 개요 및 성능	
(2) Redox flow battery	
(3) Hybrid flow battery	
(4) Zinc-Polyiodide 산화환원 흐름전지	
7) Super/Ultra-Capacitors	
(1) Capacitors의 원리 및 분류 ·····	
(2) Super/Ultra-Capacitors의 원리 및 구조	
(3) Super/Ultra-Capacitors의 등장 및 분류	358
(4) Super/Ultra-Capacitors의 특징 및 장/단점	363
(5) Super/Ultra-Capacitors의 충/방전 및 수명	364
(6) Super/Ultra-Capacitors의 Applications ······	366
(7) Super/Ultra-Capacitors의 개발동향	367
(8) Super/Ultra-Capacitors의 시장 전망	373
8) Fuel Cell ·····	376
(1) 연료전지 단위 Cell	377
(2) 연료전지 Stack	378
(3) 연료전지 기술의 종류 및 비교	378
(4) 연료전지 용도별 적용기술 및 비교	380
3-2. 차세대 2차 전지 기술	382
1) 차세대 2차 전지 기술 개요	382

(1) 주요 차세대 2차 전지 특성	
(2) 주요 차세대 2차 전지 기술 개발동향	
2) Lithium-Air (Li-Air) ······	
(1) Lithium-air Battery 개념 및 작동원리	
(2) Lithium-air Battery 종류	
(3) Lithium-air Battery 국내 연구동향 ······	
(4) Lithium-air Battery 해외 연구동향	
3) Lithium-Metal (Li-Metal)	
4) Lithium-Sulfur (Li-S) ······	
(1) Li-S Battery 개념 및 작동원리	
(2) Li-S Battery의 전압 특성	
(3) Li-S Battery의 주요 연구과제	
(4) Li-S Battery 연구 동향	
5) Lithium-ion Capacitor	
(1) Lithium-ion Capacitor 구조 및 작동	
(2) Lithium-ion Capacitor 상용화 과제	
(3) Lithium-ion Capacitor 시장 현황 및 전망	
(4) 국내외 Lithium-ion Capacitor 기술 R&D 동향	
6) Sodium-ion (Na-ion)	
(1) Sodium-ion Battery 개요	
(2) Sodium-ion의 삽입 효율 개선 연구	
(3) Sodium-ion Battery의 양극재 개발동향	
(4) Sodium-ion Battery의 음극재 개발동향	433
(5) Sodium-ion Battery의 액체전해질과 격막 개발동향	
7) 액체 금속 배터리	435
4. 국내 고효율 2차 전지 R&D 동향	436
4-1. 국내의 2차 전지 기술 정의 및 범위	436
1) 국내의 2차 전지 기술 정의	
2) 국내의 2차 전지 기술 세부 내용	
4-2. 미래부의 2차 전지 기술 개발 동향	
1) 2015년 2차 전지 분야 R&D 추진현황 및 주요성과	
(1) 미래부 2차 전지 분야 R&D 추진 개요	
(2) Li-ion Battery 관련 2015년 R&D 주요성과	
(3) 차세대 대용량 이차전지 개발 현황 및 성과	
2) 미래부의 2016년 2차 전지 분야 R&D 투자계획 및 전략	
(1) 미래부의 투자계획안	

(2)	미래부의	30대	기술별	R&D	투자계획	및	전략		44	3
-----	------	-----	-----	-----	------	---	----	--	----	---

5. 국내외 주요 중대	대형 2차 전지 적용장치	R&D 동향…	 	45
5-1. ESS 관련기]술 R&D 동향	•••••	 	45
1) 국내 ESS :	관련기술 R&D 동향	•••••	 	45
5-2. xEVs 관련	기술 R&D 동향	•••••	 	46
1) 국내 xEVs	관련기술 R&D 동향…	•••••	 	46
2) 글로벌 xEV	Vs 관련기술 R&D 동향	•••••	 ••••••• 4	47

Ⅳ. 국내외 고효율 중대형 2차 전지 관련 주요업체 사업전략 ……………………………453

1. 국내 고효율 중대형 2차 전지 관련업체 사업동향	
1-1. 주요 2차 전지 제조업체	
1) ㈜LG화학 ······	
(1) 일반 현황	
(2) 2차 전지 관련 기술동향	
(3) xEVs용 Battery 기술 및 공급	
(4) ESS용 Battery 기술 및 공급 ······	
(5) 2차 전지 관련 주요동향	
2) 삼성SDI(주) ······	
(1) 일반 현황	
(2) 2차 전지 관련 기술동향	
(3) xEVs용 Battery 기술 및 공급	
(4) ESS용 Battery 기술 및 공급 ······	
(5) 2차 전지 관련 주요동향	
3) ㈜코캄	
(1) 일반현황	
(2) 2차 전지 관련 기술동향	
(3) xEVs용 Battery 기술 및 공급	
(4) ESS용 Battery 기술 및 공급 ······	
(5) 2차 전지 관련 주요동향	
4) SK이노베이션(주)	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
5) 세방전지(주)	
(1) 일반 현황	

(2) 2차 전지 관련 기술 및 제품동향	520
(3) 2차 전지 관련 주요동향	525
6) 에너테크 인터내셔널(주)	526
(1) 일반 현황	526
(2) 2차 전지 관련 기술 및 제품동향	526
7) ㈜이아이지(EIG)	527
(1) 일반 현황	527
(2) 2차 전지 관련 기술 및 제품동향	528
(3) 2차 전지 관련 주요동향	531
8) ㈜벡셀	532
(1) 일반 현황	532
(2) 2차 전지 관련 기술 및 제품동향	533
(3) 2차 전지 관련 주요동향	534
1-2. 주요 Super Capacitor 제조업체	
1) LS엠트론(주)	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
2) ㈜네스캡	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
3) 비나텍(주)	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
4) 삼화전기(주)	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
5) 코칩(주)	
(1) 일반 현황	
(2) 2차 전지 관련 기술 및 제품동향	546
2. 글로벌 고효율 중대형 2차 전지 제조업체 사업동향	
2-1. 북미/유럽지역 주요 2차 전지 제조업체	547
1) A123 Systems LLC	547

(1) 일반현황	· 547
(2) 2차 전지 관련 기술 및 제품동향	· 547
(3) 2차 전지 관련 주요동향	· 552
2) AllCell Technologies LLC	· 555
(1) 일반현황	· 555
(2) 2차 전지 관련 기술 및 제품동향	· 555
(3) 2차 전지 관련 주요동향	· 558
3) Boston-Power Inc.	· 560
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	· 560
(3) 2차 전지 관련 주요동향	
4) LG Chem Power Inc (LGCPI)	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
5) XALT Energy LLC	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
6) Electrovaya Inc. (Canada)	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
7) EnerDel, Inc.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
8) Johnson Controls Inc.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
9) LTC/GAIA	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
10) Maxwell Technologies Inc.	
(1) 일반현황	· 592

(2) 2차 전지 관련 기술 및 제품동향	····· 592
(3) 2차 전지 관련 주요동향	595
11) Valence Technology Inc.	
(1) 일반현황	····· 596
(2) 2차 전지 관련 기술 및 제품동향	····· 596
(3) 2차 전지 관련 주요동향	600
12) EaglePicher Technologies, LLC (EPT)	
(1) 일반현황	601
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
13) Saft Groupe S.A. (FR) ·····	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
2-2. 중국의 주요 2차 전지 제조업체	
1) Amperex Technology Ltd.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
2) China BAK Battery Inc.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
3) BYD Co., Ltd.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
4) Tianjin Lishen Battery Joint-Stock Co., Ltd.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
2-3. 일본의 주요 2차 전지 제조업체	
1) Automotive Energy Supply Corporation	
 (1) 일반현황 (2) 22	
 (2) 2차 전지 관련 기술 및 제품동향 (2) 2치 지지 관련 기술 및 제품동향 	
(3) 2차 전지 관련 주요동향	
2) GS Yuasa Corporation	$\dots 634$

(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
3) Hitachi Automotive Systems, Ltd.	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
4) Lithium Energy Japan ·····	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
5) Panasonic Corporation	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
6) Primearth EV Energy Co., Ltd	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	
7) Toshiba Corporation	
(1) 일반현황	
(2) 2차 전지 관련 기술 및 제품동향	
(3) 2차 전지 관련 주요동향	

│. 고효율 중대형 2차 전지 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<표1-1> 금속의 전자 친화도(Electrons Affinity)와 산화상태(Oxidation State) Numbers 39
<표1-2> 주요 Battery 개발 연혁
<표1-3> 주요 2차 전지의 전극 구성 소재 및 충/방전 작용42
<표1-4> Battery의 성능 및 내구도를 결정하는 주요 특성44
<표1-5> 주요 2차 전지 종류별 특성 비교46
<표1-6> Battery수명에 영향을 주는 주요 변수의 기술별 비교46
<표1-7> 주요 2차 전지 기술 분류
<표1-8> 주요 2차전지의 특징 및 적용분야48
<표1-9> 현재 주로 사용하는 2차전지의 주요 제원 비교 49
<표1-10> ESS 적용 2차 전지 기술별 특성
<표1-11> 공통적인 신/구 battery norms
<표1-12> 주요 battery pack 2차 전지 Cell Types별 특징 요약
<표1-13> Cell Type별 표시 cell voltage

Ⅱ. 고효율 중대형 2차 전지 시장 동향과 전망
<표2-1> 고효율 중대형 2차 전지 시장을 성장시키는 시장 환경의 주요 변화
<표2-2> 성장기 각 국면별 제품 가격과 부품 가격의 메커니즘
<표2-3> SNE Research의 Global LIB Market Cell/Pack 가격 전망
<표2-4> SNE Research의 용량별 글로벌 LIB 시장 전망
<표2-5> SNE Research의 Global LIB Market 매출총액 전망
<표2-6> SNE Research의 Global LIB Market 매출총액 전망
<표2-7> 소형 LIB 시장점유율 변화 추이85
<표2-8> 중대형 LIB 시장점유율 변화 추이
<표2-9> 종합 (소형+중대형) LIB 시장점유율 추이
<표2-10> Battery Top 10 업체별 판매 추이
<표2-11> 주요 국가별 전기차 보조금 및 지원 계획
<표2-12> 국내 지자체별 EV 보조금 지급 대수 현황
<표2-13> 국내 2015년 EV 보급대상 차종 현황
<표2-14> 유럽 자동차 배출가스 관련 EURO-X 규제 정책 내용
<표2-15> 3가지 xEV 급속충전 방식
<표2-16> 국내 출시된 xEV의 충전방식 현황

<표2-17> ESS의 도입이 필요한 배경
<표2-18> 주요 국가별 ESS 보급 확산 정책
<표2-19> LiB 채용 ESS분야 년도별 판매량102
<표2-20> Mission Innovation (MI) 개요
<표2-21> 6대 핵심기술개발 분야
<표2-22> Post-2020 온실가스 감축목표 시나리오
<표2-23> 2차 전지 산업의 연쇄 효과가 큰 산업 특성
<표2-24> 재생에너지 발전 보조용 Lead Acid & Li-ion Cost 비교
<표2-25> Energy Storage System (ESS) 주요 기술별 평가
<표2-26> 주요 Energy Storage Devices 제조업체
<표2-27> Australia의 Battery 적용 대용량 Energy Storage 실증 전개 현황129
<표2-28> 단계별 ESS 장치 및 그 적용
<표2-29> 글로벌 ESS 기술별 설치 현황 및 시장규모
<표2-30> 국가별 ESS정책 필요성 및 정책발전 방향
<표2-31> 국내 에너지저장장치 실증 및 보급사업 추진 로드맵
<표2-32> 국내 수용가용(가정/상업) ESS 실증사업 내용
<표2-33> 국내 신재생 출력안정화 및 마이크로그리드용 ESS 실증사업 내용
<표2-34> 국내 주파수조정용 ESS 실증사업 내용
<표2-35> 2014년 스마트그리드 보급 사례를 통한 ESS 경제성 검토139
<표2-36> ESS 및 채용 Battery 시장전망
<표2-37> SNE Research의 글로벌 LIB ESS 시장전망143
<표2-38> 캘리포니아주 3대 전력사업자별 ESS 설치 의무 내용
<표2-39> ESS 관련 국내 현황 및 계획에 대한 SWOT 분석 내용
<표2-40> 현재 일반적으로 사용되는 주요 Battery 가격 비교148
<표2-41> 근래의 Most Common EVs 특성 개략
<표2-42> 현재 판매 중인 Common EVs의 Battery Size와 Energy 소모량 154
<표2-43> EV용 Batteries의 특성 요약
<표2-44> 국내 자동차 연비 및 배기가스 규제
<표2-45> 산업통상자원부의 주요 친환경차 연구개발 지원 현황161
<표2-46> 연비 및 배기가스 규제 세부내용
<표2-47> 주요국 자동차 연비 및 배기가스 규제 방안
<표2-48> 해외 내연기관 관련 정부지원 프로그램
<표2-49> 국가별 자동차업체의 연구개발 투자 현황(2014)
<표2-50> 전기 자동차에 대한 국내 소비자 의견조사
<표2-51> 친환경차 및 충전 인프라 보급 현황 ···································
<표2-52> 국내 전기자동차 보급 계획 ···································
<표2-53> 국내 시판중인 8종 전기자동차 주요 사양170

<표2-54> 전 세계 친환경차 종류별 판매량 추이
<표2-55> 2015년 전 세계 전기자동차 모델별 판매량 순위
<표2-56> 주요국의 연도별 전기자동차 수요 현황
<표2-57> 세계 친환경자동차 시장 현황 (2014년)
<표2-58> 글로벌 주요 8개국 EV, PHEV 판매량
<표2-59> 중국 전기차 판매 현황
<표2-60> 글로벌 주요 EV 모델별 판매 현황
<표2-61> SNE Research의 글로벌 xEV 시장 전망176
<표2-62> SNE Research의 글로벌 xEV용 2차 전지 시장전망
<표2-63> 미국 내 판매 중인 순수전기차 Models (2016.08 기준)
<표2-64> 미국 내 판매 중인 (Plug-in) Hybrid EVs (2016.08 기준)181
<표2-65> 미국 전기차 판매 현황
<표2-66> 미국 전기차 판매모델 순위 (2012~2015)
<표2-67> 북미시장 주요 전기차 및 배터리 판매량
<표2-68> xEVs 관련 국내 현황 및 계획의 SWOT 분석 내용
<표2-69> Oxide (산화물) 정의
<표2-70> 원소 주기율표의 리튬
<표2-71> 리튬의 물리적 속성
<표2-72> Lithium의 원자/기타 속성
<표2-73> 자연적으로 가장 안정적인 Lithium 동위원소
<표2-74> World Mine Production/Reserves/Resource (미국 생산량 비공개)
<표2-75> 광석과 염호 추출 방식 비교
<표2-76> 리튬 활용 주요 분야 및 내용
<표2-77> Cobalt의 일반적/물리적 성질
<표2-78> Cobalt의 Atomic/기타 성질
<표2-79> 가장 안정적인 Cobalt 동위원소
<표2-80> Graphite의 Types
<표2-81> LiB 적용 소재별 특성 (가격은 2014년 기준)
<표2-82> LiB용 신소재 적용 시기
<표2-83> Iphone 6/Galaxy S6용 2014년 Pouch Cell 원가 구조 비교
<표2-84> xEVs Cell 영업이익 시나리오 전망218

Ⅲ. 고효율 증대형 2차 전지 기술과 개발 동향	··229
<巫3-1> TRL (Technology Readiness Levels)	·· 229
<玉3-2> MRL (Manufacturing Readiness Levels)	
<표3-3> Global Lead Acid Battery Key Manufacturer	
<표3-4> 과거/현재/향후의 Lead Acid Batteries 종류별 특성 요약	
<표3-5> 납축전지의 장/단점 비교	
<표3-6> AGM VRLA 전지의 장/단점	·· 243
<표3-7> ALC 주요 R&D 동향 ·······	·· 246
<표3-8> 과거/현재/향후의 Nickel-based Batteries 종류별 특성 요약	·· 247
<표3-9> Global Nickel-Based Battery Key Manufacturer	·· 248
<표3-10> NiCd의 장/단점 비교	·· 249
<표3-11> Alkaline, Reusable Alkaline, Eneloop, NiMH의 비교	·· 253
<표3-12> Ni-MH Battery의 장/단점 비교	·· 253
<표3-13> Lithium-ion Battery의 주요 특성 ······	·· 257
<표3-14> Lithium-ion계 배터리의 4가지 핵심요소	·· 258
<표3-15> Lithium-ion과 니켈수소합금(NiMH) 배터리 주요 성능 비교	·· 259
<표3-16> Li-ion Battery의 주요 장/단점 요약	·· 259
<표3-17> 일반 Lead-Acid Battery와 삼성 SDI Lithium-ion Battery(LIB)의 비교	·· 261
<玉3-18> Global Lithium-ion-Based Battery Key Manufacturer	·· 261
<표3-19> 주요 제조업체별 HEV용 Lithium-ion Battery 사양	·· 261
<표3-20> Li-ion cell/packs의 안전에 대한 표준인 IEC 62133의 Safeguards	
<표3-21> 주요 Li-ion batteries Type의 종류별 특성 요약	·· 271
<표3-22> Lithium Cobalt Oxide (LiCoO2) 특성 ······	·· 273
<표3-23> Lithium Manganese Oxide (LiMn2O4) 특성	·· 275
<표3-24> Lithium Nickel Manganese Cobalt Oxide 특성	·· 277
<표3-25> Li-phosphate 성능 ······	
<표3-26> NCA 성능	
<표3-27> Li-titanate 성능 ······	·· 280
<표3-28> Lithium-ion, Lithium-ion polymer, Lithium-metal Polymer Battery cell 비교 ·····	·· 282
<표3-29> 전극의 크기, 형태, 결정도, 모양 등에 의한 2차전지 성능 변화	
<표3-30> 양극(Cathode)활물질의 구조별 특성	
<표3-31> 리튬이차전지 양극활물질 종류 및 특징	
<표3-32> 주요 양극 활물질(Active Materials)의 개발 동향	
<표3-33> 주요 양극 활물질(Active Materials) 특성 및 2차 전지 제조기업	
<표3-34> Lithium-ion 배터리 양극소재별 배터리 성능 비교	
<표3-35> 주요 음극 활물질(Active Materials)의 특성	
<표3-36> 리튬이차전지 음극활물질 종류 및 특징	·· 291

<표3-37> 리튬이차전지 전해액 리튬염의 종류 및 특성	
<표3-38> 리튬이차전지 전해액 유기용매의 종류 및 특성	
<표3-39> 주요 전해질의 특성 ······	
<표3-40> 전해질 R&D의 과제	
<표3-41> 주요 분리막 재료 종류/특징/국내외 공급업체	
<표3-42> 재료에 따른 Li-ion Battery용 분리막의 분류 및 특성	
<표3-43> EVs용 batteries 가격 비교 ······	
<표3-44> UN 38.3 test 내용 ·····	
<표3-45> BMS 개요 ·····	
<표3-46> Smart battery의 Advantages & Limitations	
<표3-47> Smart battery chargers의 종류 및 기능	
<표3-48> System Management Bus (SMBus) 개요 ······	
<표3-49> Alternate Batteries의 종류별 특성 요약	
<표3-50> Semi-Batteries 종류별 특성 요약 ·····	
<표3-51> Lithium vs. Sodium의 비교 ·····	
<표3-52> Global Sodium-Based Battery Key Manufacturer	
<표3-53> NaS 전지 특징 및 구조	
<표3-54> Sodium-Nickel-Chloride (Na-NiCl2) Battery의 Technical data	
<표3-55> Sodium-Nickel- Chloride (Na-NiCl2) battery 장/단점	
<표3-56> Aquion Energy의 Aspen battery series 제원 요약	
<표3-57> Aqueous Hybrid Ion Batteries vs. Lithium Ion Batteries 비교	
<표3-58> FSA염과 TFSA염의 열적성질	
<표3-59> 스미토모 전공에서 측정한 코인 셀 구성 및 측정 조건	
<표3-60> 방전 시 C-rate 특성 및 측정조건	
<恶3-61> Global Metal - air (Zinc - air) Battery Key Manufacturer	······ 342
<표3-62> Metal - air (Zinc - air) Battery 장/단점	
<選3-63> Global Flow battery Key Manufacturer	
<표3-64> Capacitor의 3가지 Types	
<표3-65> Fixed Capacitor 종류 ······	
<표3-66> 주요 Capacitor의 특성	
<표3-67> Supercapacitor의 3가지 개체군	
<표3-68> Lithium-ion Battery와 Supercapacitor의 성능 비교	
<표3-69> 글로벌 LIC 주요 생산업체 제품 특징 및 스펙	
<표3-70> DLC의 장/단점	
<표3-71> Supercapacitor vs. Li-ion 성능 비교	
<표3-72> 초고용량 커패시터의 용량별 적용분야 및 용도	
<표3-73> 국내 주요 초고용량 커패시터 생산 업체 현황 (2012)	

<표3-74> 초고용량 커패시터 용도별 시장 분류
<표3-75> 초고용량 커패시터 용도별 시장 전망 ···································
<표3-76> 초고용량 커패시터 용량별 시장 전망 ···································
<표3-77> 전해질에 의한 연료전지의 분류 (고온형과 저온형 분류)
<표3-78> 연료전지 Type별 기술적 특성 비교
<표3-79> 연료전지 기술별 용도 및 장단점 비교
<표3-80> 용도별 연료전지 종류
<표3-81> Applications Category 및 관련 연료전지 기술
<표3-82> 발전 용량별 연료전지 분류
<표3-83> 잘 알려진 차세대 2차 전지 특성 요약
<표3-84> 비수용성 시스템의 전해질에 대한 다양한 연구
<표3-85> 수용성 리튬-공기 시스템에 관한 다양한 연구
<표3-86> 고체전해질의 구분
<표3-87> Lithium-ion Capacitor 잠재 시장규모 추정
<표3-88> Lithium-ion Capacitor 선도업체 제품특징 및 사양
<표3-89> 국내의 고효율 2차 전지 1, 2차 세부기술 정의 및 범위437
<표3-90> 2차 전지 분야 지원(정부출연금) 현황
<표3-91> 기술혁신과제 관련 중점추진 사항 438
<표3-92> 미래부의 2016년 R&D 투자계획안
<표3-93> 국내 환경친화적자동차 경쟁력 비교 446
<표3-94> 국내 순수기술 EV 현황
<표3-95> Frost & Sullivan은 예측한 8가지 형태의 세계 자동차 시장 기술 Trend 447
<표3-96> EV의 글로벌 R&D 동향

Ⅳ. 국내외 고효율 중대형 2차 전지 관련 주요업체 사업전략 ………………………………453

<표4-1> ㈜LG화학 프로필	•••••• 453
<표4-2> R&D 분야별 연구소	
<표4-3> 연구소별 R&D 분야 개략	
<표4-4> 주요 R&D 성과	
<표4-5> LG화학의 LIB 4대 주요소재 Supply Chain	
<표4-6> LG화학의 xEVs용 Battery 개발/생산 연혁	
<표4-7> LG화학의 xEVs용 Li-ion Battery 개발 협력 및 공급 내용	
<표4-8> LG화학 ESS용 Battery의 차별성	
<표4-9> LG화학의 ESS 설치 사례	
<표4-10> LG화학의 韓-美-中-歐'글로벌 4각 생산체제	
<표4-11> 삼성SDI(주) 프로필	······ 474
<표4-12> 삼성 SDI의 주요 R&D 센터	

<표4-13> 삼성 SDI의 주요 연구분야
<표4-14> 삼성 SDI 중앙 연구소의 R&D 연혁
<표4-15> 해외 특허 등록 현황 (2016년 1분기 기준, 단위: 건)) 477
<표4-16> 삼성SDI의 자동차용 2차전지 미래 기술 로드맵
<표4-17> 삼성SDI의 LIB 4대 주요소재 Supply Chain
<표4-18> 삼성SDI 자동차용 각형 배터리 셀의 특징
<표4-19> 삼성SDI의 xEVs용 Battery Cell 제품
<표4-20> 삼성SDI의 xEVs용 Battery Module 제품
<표4-21> 삼성SDI의 xEVs용 Battery Pack 제품
<표4-22> Energy Storage System (ESS) Applications 용도 및 특징
<표4-23> 삼성SDI ESS 사업 연혁
<표4-24> 주택 및 상업용 All-in-One Solution 제품 사양
<표4-25> 통신기지국용 Solution (1,77kWh Tray) 제품 사양
<표4-26> 가정용·통신기지국용 주요 설치사례485
<표4-27> 삼성 SDI의 UPS/UES용 ESS 제원
<표4-28> UPS·UES용 주요 설치사례
<표4-29> 전력·상업용 (Utility Commercial) Solution 제품 사양
<표4-30> Utility·상업건물용 주요 설치사례
<표4-31> ㈜코캄 프로필
<표4-32> 2차 전지 관련 주요 연혁 494
<표4-33> SLPB Cell 종류별 특성 및 제원
<표4-34> 코캄의 Battery Module KBM216 시리즈 제원표
<표4-35> 코캄의 Battery Module KBM255 시리즈 제원표
<표4-36> Kokam Battery Module KBM460 시리즈 제원표
<표4-37> Kokam KCPM Battery Pack 제원표
<표4-38> Kokam EV Battery Pack 구성 및 제원
<표4-39> Kokam EV Battery Pack 인증 내용501
<표4-40> 코캄의 KRI/KRO Standard Rack - 고출력형 제원표
<표4-41> 코캄의 KRI/KRO Standard Rack - 고에너지형 (고용량) 제원표503
<選4-42> Kokam Rack System (KRS) Technical Data-NMC High Power Type 504
<選4-43> Kokam Rack System (KRS) Technical Data-NMC High Energy Type 504
<選4-44> Kokam Rack System (KRS) Technical Data-LTO High Power Type 505
<표4-45> Kokam 무정전전원시스템 (Uninterruptible Power Supply, KUPS) 특성 505
<표4-46> Kokam KHESS의 주요 기능
<표4-47> Kokam KHESS의 종류 및 특성
<표4-48> 코캄의 KCE 제원
<표4-49> 코캄의 에너지 저장장치 분야 설치 사례

<표4-50> SK이노베이션(주) 프로필
<표4-51> SKI의 LIB 4대 주요소재 Supply Chain
<표4-52> 전기차용 배터리 출하량 집계(2015년~2016년2월) ····································
(표4-53> 세방전지(주) 프로필
<표4-54> 세방전지의 보유 특허
<표4-55> 세방전지의 밀폐식Ni-MH, 액식Ni-MH, Ni-Cd Battery 비교
<표4-56> 세방전지의 HEV용 NI-MH Battery Pack 제원
<표4-57> 세방전지 Hybrid 연료전지 시스템 제원
<표4-58> Ni-MH 채용 신재생 에너지 실증 연구 사업 수행 내용
<표4-59> 에너테크 인터내셔널(주) 프로필
<표4-60> 에너테크 인터내셔널의 보유 기술 및 특허 현황
<표4-61> ㈜이아이지 프로필
<표4-62> EIG의 ePLB 특성 및 성능 그래프
<표4-63> EIG의 ePLB Cell 종류 및 특성
<표4-64> EIG의 Electrode 종류 및 특징530
<표4-65> EIG의 Electrode 제원
<표4-66> ㈜벡셀 프로필
<표4-67> 벡셀의 사업분야 현황
<표4-68> 벡셀의 2차 전지 관련 정부R&D사업 수행 현황533
<표4-69> 벡셀의 제품 개발 현황
<표4-70> LS엠트론㈜ 프로필
<표4-71> ㈜네스캡 프로필
<표4-72> 네스캡의 Ultracapacitor vs. Battery 비교538
<표4-73> 네스캡의 Ultracapacitor와 Pseudocapacitor 작동원리
<표4-74> 네스캡의 EDLC Single Cell 특성539
<표4-75> 네스캡의 Pseudocapacitor Single Cell 특성539
<표4-76> 네스캡의 EDLC Module 특성
<표4-77> 비나텍㈜ 프로필
<표4-78> 비나텍의 특허 및 인증 현황542
<표4-79> 비나텍의 Hy-Cap과 Li-ion Battery 특성 비교543
<표4-80> 비나텍의 Supercapacitor (Hy-Cap) 특성 및 적용분야
<표4-81> 삼화전기(주) 프로필
<표4-82> 코칩(주) 프로필
<표4-83> 코칩의 EDLC (Supercapacitor)관련 주요 연혁
<표4-84> A123 Systems, LLC 프로필
<選4-85> Nanophosphate Advantage
<표4-86> 차량시동용 UltraPhosphate Lithium-ion 12V/48V battery 특성549

<표4-87> A123의 Micro-hybrids용 저전압 Solutions	550
<표4-88> Nanophosphate® AMP20 Energy Modules 특성 및 제원	
<표4-89> Nanophosphate® Energy Core Pack (23kWh) 특성 및 제원	551
<표4-90> A123의 Lithium Ion Prismatic Cell 특성 및 제원 ······	551
<표4-91> AllCell Technologies LLC 프로필	555
<표4-92> 2차 전지 관련 서비스 종류 및 개요	557
<표4-93> Grid-Tied Energy Storage 제원	558
<표4-94> Boston-Power inc. 프로필 ······	560
<표4-95> Boston-Power의 Lithium-ion Battery Technology Platform 특성	561
<표4-96> Boston-Power의 주요 Li-ion Battery 제품 개요	····· 562
<표4-97> Boston-Power의 2차 전지관련 주요 연혁	····· 562
<표4-98> LG Chem. Michigan Inc. 프로필 ······	····· 564
<표4-99> LG Chem/LGCPI Lithium-Ion Polymer Cells의 고유 특성	565
<표4-100> XALT Energy LLC 프로필	567
<표4-101> XALT Energy의 표준 NMC/Graphite & NMC/LTO Cells 특성	569
<표4-102> XALT Li-Ion LTO Cell의 기본적인 성능 특성	570
<표4-103> XMP 종류 및 특성	····· 570
<표4-104> BMS/PDU의 기능 및 특성	
<표4-105> Electrovaya Inc. 프로필 ······	573
<표4-106> Electrovaya의 기술 및 생산 능력	573
<표4-107> 광범위한 차량용/고정형 Energy Storage Systems	
<표4-108> Enerdel, Inc. 프로필	
<표4-109> CP160-365 / CE175-360 Moxie+ Prismatic Cell 특성	579
<표4-110> Moxie+ Battery Module 특성	579
<표4-111> Vigor+ Battery Packs 제원	580
<표4-112> Johnson Controls Inc. 프로필 ······	583
<표4-113> JCI의 National Laboratory Partnerships 지원 활동	
<표4-114> JCI의 University Partnerships R&D 내용	
<표4-115> JCI의 자동차용 Battery 제품군	
<표4-116> LTC/GAIA 프로필	
<표4-117> Battery Safety에서 요구되는 Systems Approach 사항	
<표4-118> GAIA Li-ion Battery Cells 제품군	
<표4-119> GAIA/LTC의 Li-ion Battery 관련 주요 연혁	
<표4-120> GAIA/LTC의 xEVs 참여 Projects	
<표4-121> Maxwell Technologies Inc. 프로필 ······	
<표4-122> Maxwell의 Ultracapacitors Cells 제품군	594
<표4-123> Maxwell의 Ultracapacitor Modules 제품군	594

<표4-124>	Valence Technology Inc. 프로필 ······	596
<표4-125>	Valence의 Li-ion Battery 개발 연혁	596
<표4-126>	Valence의 Lithium Iron Magnesium Phosphate (LiFeMgPO4)와 다른 Battery 비교…	597
<표4-127>	Valence의 U-Charge© lithium phosphate battery Module 제원	599
<표4-128>	Valence U-BMS 종류 ······	599
<표4-129>	EaglePicher Technologies, LLC 프로필 ······	601
<표4-130>	Lithion Standard Cell Product Line 특성 개요 ······	602
<표4-131>	주요 적용 Application	603
	Saft Groupe S.A. 프로필 ······	
<표4-133>	사업 부문별 관련 제품	606
<표4-134>	SAFT의 군수용 Battery System 제품군 ······	608
<표4-135>	Saft의 군수용 Battery System 제원 ······	609
<표4-136>	산업용 및 Grid 보조 Energy Storage System 제품군	609
<표4-137>	Saft의 xEVs용/철도용 Battery System 제품군	610
<표4-138>	Saft의 Space용 Battery System 제품군 ······	610
<표4-139>	Amperex Technology Ltd. 프로필 ······	612
<표4-140>	업체별 중소형 Battery 출하량	613
<班4-141>	China BAK Battery, Inc. 프로필 ······	614
<표4-142>	BAK의 High Power Lithium-ion Cells 제품군	615
<표4-143>	BAK의 ESS Solutions ····································	616
<표4-144>	BAK의 순수전기차/전기버스/전기Bike/전기Motorcycle Battery System Solution 9 ····	617
<표4-145>	BAK의 주요 Patents	618
<표4-146>	BAK의 주요 참여 Projects ····································	618
<표4-147>	BYD Co., Ltd. 프로필 ······	619
<표4-148>	BYD의 R&D 센터 및 담당 연구분야	620
<표4-149>	BYD Lithium-ion/Polymer Battery 종류 ······	621
<표4-150>	BYD Nickel Battery 4 Type의 특성	622
<표4-151>	Tianjin Lishen Battery Joint-Stock Co., Ltd. 프로필 ······	624
<표4-152>	TLBJ의 LEV-Pack 제품군	625
<표4-153>	TLBJ의 Ultracapacitor & Modules 제품군	625
<표4-154>	Automotive Energy Supply Corporation 프로필	627
<표4-155>	Manganese Based LIB vs. Cobalt Based LIB 비교 ···································	628
<표4-156>	AESC의 EV용 Lithium-Ion Cell의 제원	630
	EV & Lithium-Ion Module	
<표4-158>	HEV용 Lithium-Ion Cell 제원 ······	632
<표4-159>	HEV용 Lithium-Ion Module 제원	632
<표4-160>	HEV용 Lithium-Ion battery Pack 제원.	633

<표4-161>	GS Yuasa Co. 프로필 ······	634
<표4-162>	GS Yuasa의 Lithium-ion Battery for EVs ······	635
<표4-163>	GS Yuasa의 자동차, Motorcycle용 battery 제품군	637
	GS Yuasa의 산업용 battery 제품군	
<표4-165>	GS Yuasa의 Power Supply System 제품군	638
<표4-166>	합작회사(Joint Venture, JV) 설립 동향	638
<표4-167>	Hitachi Automotive Systems, Ltd. 프로필 ······	640
<표4-168>	Hitachi Vehicle Energy, Ltd. 프로필	640
<표4-169>	Hitachi의 xEVs용 Li-ion Battery Cells/Modules/Packs	641
	Hitachi의 Lithium-ion Battery Cell 과 Modules 제원	
<표4-171>	Hitachi Li-ion Battery 적용 차종	642
<표4-172>	Lithium Energy Japan 프로필 ·····	644
<표4-173>	GS Yuasa의 Lithium-ion Battery for EVs	644
	Panasonic Corporation 프로필 ·····	
<표4-175>	Panasonic의 사업분야 ·····	646
<표4-176>	Panasonic의 에너지 분야 10년 R&D Vision	647
<표4-177>	Panasonic의 Ni-MH Battery ······	648
	Panasonic의 Li-ion Battery ·····	
<표4-179>	Primearth EV Energy Co., Ltd. 프로필 ·····	651
	PEVE의 Battery Modules 특성	
	PEVE의 Battery Modules 제원	
	Toshiba Corporation 프로필 ······	
	도시바 한국 법인	
	SCiBTM Li-ion Battery의 특성	
	High power 2.9Ah cell 특성 ······	
	High Energy 20Ah/23Ah cell 특성 ······	
	20Ah 2P12S & 20Ah 2P9S modules (xEVs & ESS)	
	Type3-20 & Type3-23 2P12S modules (고정식/산업용 ESS)	
<표4-189>	SCiBTM Battery Systems 적용 현황 ······	660

│. 고효율 중대형 2차 전지 개요 ···································
<그림1-1> 화학전지의 주요 구성요소
<그림1-2> Parthian Battery
<그림1-3> 1796년에 실시된 Volta의 Electric Battery 실험
<그림1-4> 2차전지 충·방전 원리
<그림1-5> Li-ion Battery Separator를 통과하는 Ion flow
<그림1-6> 2차전지의 에너지 특성과 Power 특성에 따른 개발 방향48
<그림1-7> 1차 전지와 2차 전지의 Specific Energy 비교
<그림1-8> 1차 전지와 2차 전지의 부하상태(Under Load)에서의 Specific Energy 비교 52
<그림1-9> Lithium-ion Cylindrical Cell의 단면도
<그림1-10> 18650 셀의 수요와 공급
<그림1-11> 다양한 형태의 Hawker Cyclone의 own format
<그림1-12> Button cells 단면도
<그림1-13> Prismatic cells 단면도
<그림1-14> Pouch Cell
<그림1-15> Pack Type별 Li-ion Battery 가격 추이 (\$US/Wh)63
<그림1-16> 직렬연결 (4S) 예시
<그림1-17> 병렬연결 (P4) 예시
<그림1-18> 직/병렬 (2S2P) 구성 예시
Ⅱ. 고효율 중대형 2차 전지 시장 동향과 전망
<그림2-1> 전지산업의 Paradigm, 시장 환경 변화
<그림2-2> 1차, 2차전지 종류별 매출액(Revenue) Global 시장 점유율
<그림2-3> Li-ion Battery 시장 전망
<그림2-4> Li-ion Battery Application별 시장 전망
<그림2-5> Li-ion Battery Application별/Type별 출하 비중 전망
<그림2-6> 전 세계 LiB 시장 규모 및 용도별 배터리 시장 전망
<그림2-7> Li-ion Battery 가격 전망
<그림2-8> 소형-Li-ion Battery: Application별 시장규모 및 비중
<그림2-9> 스마트폰 & 노트북 출하량 및 침투율
<그림2-10> 첨단 Batteries의 사용 분야별 Energy Capacity (World Markets: 2014) 80
<그림2-11> 분야별 중대형 Advanced Batteries Energy Capacity (World Markets: 2015) 80

<그림2-12> 글로벌 xEV 및 xEV용 리튬이온전지 시장 연평균 성장률 전망81
<그림2-13> 주요 국가별 xEV 시장 현황 및 전체 자동차 시장 대비 xEV 침투율
<그림2-165 + 프 아무는 프 아무는 한 분 한 옷 든 밖 + 6 + 부 한 밖 + M2 + 6 + 분 한 옷 든 밖 + 6 + 부 한 밖 + M2 + 6 + 분 한 옷 든 밖 + 82 + 82
< < < < < < < < < <
<그림2-16> Li-ion Battery 업체별 2016년 이후 실적 전망
<그림2-17> 글로벌 xEV 시장 차종별 믹스 전망 및 1대당 평균 전지 적재 용량
<그림2-18> 출시 시기별 주요 xEVs
<그림2-19> xEVs 미국 시장 현황/전망 및 미국시장 차종별 판매량/월 현황90
<그림2-20> xEVs 중국 시장과 국내 시장 현황/전망
<그림2-21> 한국 EV 공급가격과 실제 구입 가격
<그림2-22> 국내의 xEV용 급속 충전기 보급 현황
<그림2-23> 테슬라 Supercharger Station 현황 및 계획 ··································
<그림2-24> ESS(Energy Storage System, 에너지저장시스템) 역할 및 개요97
<그림2-25> 주요 ESS 유형별 용량 대비 가격 (\$/kWh) 및 유형별 수명
<그림2-26> 글로벌 ESS 시장 및 글로벌 ESS용 LiB 시장 연평균 성장률 전망 101
<그림2-27> 2015년 전 세계 전기차 시장의 국가별 차지 비율 및 중국 전기차 시장전망 104
<그림2-28> LG화학에 대한 Global 평가 (2013년)
<그림2-29> 경제성장과 CO2 배출량 추이
<그림2-30> INDC Scenario와 450 Scenario의 분야별 투자 비율 비교
<그림2-31> 국내의 최근 에너지관련 정책동향
<그림2-32> 2차 전지 산업의 주요 Value Chain
<그림2-33> 세계 가정용 ESS 시장전망
<그림2-34> 글로벌 시장 지역/기술별 Energy Storage Power 용량 (3Q 2016)141
<그림2-35> 기술별 분산발전/Utility-Scale Energy Storage Power 용량 및 매출 (2016-2025) 142
<그림2-36> 지역별 가정용 Energy Storage 연간 보급용량 추이 (World Markets: 2016-2025) … 143
<그림2-37> 자동차용 Battery Wattages (시동용 및 xEVs용)147
<그림2-38> 6개 hybrid cars의 Battery 용량 (@256,000km, 160,000 miles)149
<그림2-39> 세계 전기차 시장 및 전기차 배터리 가격 전망
<그림2-40> Tesla S Model chassis 바닥에 장착된 Battery
<그림2-41> EV fuel gauge에서 보이는 3개의 SoH Ranges
<그림2-42> 친환경자동차 누적 보급목표
<그림2-43> 전기차 및 충전인프라 구축 로드맵(안)
<그림2-44> 세계 전기차 판매 Top 7
<그림2-45> 중국과 미국의 전기차 시장 현황 및 전망
<그림2-46> 글로벌 친환경차 시장 전망
<그림2-47> 리튬은 원자 기준으로 지구상에서 염소와 비슷한 양이 존재 193
<그림2-48> 전 세계 리튬 사용량 (2015년)

리튬전지의 원료인 탄산리튬 가격 추이	204
용도별 글로벌 리튬 수요 전망	205
Cobalt의 주 사용처 ······	207
Graphite의 구조 ·····	211
Lithium-ion의 Voltage discharge curve	212
Graphite와 Graphene ······	214
LiB 원가 구조 및 4대 소재 시장 규모 현황	216
2016년 7월 기준 원자재(Raw Materials) 가격 추이	217
양극재 가격 변화 추이	219
양극 활물질 종류별 시장 수요 현황과 종류별 공급업체 순위	219
양극 활물질 종류별 가격 비교 및 시장수요 변화 전망	220
음극재 가격 변화 추이	220
음극재 종류별 시장 수요 현황 및 음극 활물질 종류별 경쟁 우위 현황	221
분리막 가격 변화 추이	221
분리막 시장 수요 현황 및 분리막 소재 공급 업체 현황	222
전해액 가격 변화 추이	222
전해액 시장 수요 현황 및 전해액 소재 공급 업체 현황	223
기존 메이저 기업과 신규 진입 기업들의 생산 비중 전망	225
	8도별 글로벌 리튬 수요 전망 Cobalt의 주 사용처 Graphite의 구조 Lithium-ion의 Voltage discharge curve Graphite와 Graphene LiB 원가 구조 및 4대 소재 시장 규모 현황 CO16년 7월 기준 원자재(Raw Materials) 가격 추이 CO16년 7월 기준 원자재(Raw Materials) 가격 현황 우위 현황 CO16년 7월 기준 원자재(Raw Materials) 가격 현황 우위 현황 CO16년 7월 기준 원자재(Raw Materials) 가격 현황 주이 CO16년 7월 지장 수요 현황 및 분리막 소재 공급 업체 현황 CO16년 7월 가격 변화 추이

<그림3-1> Lead-Acid Battery 구조도	234
<그림3-2> 시동용 일반 납축전지와 ESS용 Deep-cycle battery	236
<그림3-3> 120Ah Lead Acid Battery의 가용용량 (@Peukert numbers 1.08~1.50)	238
<그림3-4> 일반 납축전지(Flooded type)와 VRLA의 비교	242
<그림3-5> Advanced Lead-carbon Battery의 개념도	244
<그림3-6> 표준 NiCd (7.2V, 900mAh)의 성능 그래프	250
<그림3-7> Ultra-high-capacity NiCd (6V, 700mAh)의 성능 그래프	250
<그림3-8> 니켈수소 전지의 원리	251
<그림3-9> 밀폐형 Ni-MH Battery의 충/방전 Simulation 개념도	251
<그림3-10> NiMH (6V, 950mAh)의 성능 그래프	252
<그림3-11> Lithium-ion Battery의 Ion flow	258
<그림3-12> 4종 classic lithium-ion systems의 Ragone Plot	263
<그림3-13> Li-ion Power Cell의 성능 그래프	264
<그림3-14> Panasonic NCR18650B Energy Cell의 출력 특성	265
<그림3-15> Panasonic UR18650RX Power Cell의 출력 특성	266
<그림3-16> Nail Penetration Test 개념 및 결과	267
<그림3-17> lead/nickel/lithium-based battery 들의 Typical specific energy 비교	272

<그림3-18>	Lithium Cobalt Oxide(LiCoO2) 구조 및 성능 분포도	273
<그림3-19>	Lithium Manganese Oxide (LiMn2O4) 구조 및 성능 분포도	274
<그림3-20>	NMC Spider Web 성능 분포도 ······	276
<그림3-21>	Li-phosphate Spider Web 성능 분포도	278
<그림3-22>	NCA Spider Web 성능 분포도 ······	279
<그림3-23>	Li-titanate 특성 분포도 ······	280
<그림3-24>	xEVs용 Laminate형 Lithium-ion 2차전지의 구성도	283
<그림3-25>	Gurpreet Singh의 연구팀이 개발한 이황화몰리브덴 시트	288
<그림3-26>	서로 다른 코팅을 가진 다공성 실리콘 마이크로입자	289
<그림3-27>	Li-ion Battery 전해질 개발 동향	298
<그림3-28>	새로운 Polymer 전해질을 사용한 Li-ion Battery 구조도	300
<그림3-29>	Lithium-ion cell의 building block과 Separator, Ion flow	301
<그림3-30>	PP/PE/PP Tri-Layer 단면도	304
<그림3-31>	금속 덴드라이트와 (PEO/ANF) 복합물	306
	Lithium-ion 전지의 보호회로 및 동작범위	
<그림3-33>	스마트 회로의 개요	311
<그림3-34>	Battery Pack의 냉각과 온도변화에 따른 성능 영향(Renault 사)	315
<그림3-35>	Smart Battery Pack의 구성 PCM(보호회로) + Gauging(스마트 회로)	315
<그림3-36>	Coulomb Counting 기반 Fuel Gauge 기본 원리	316
<그림3-37>	State-of-charge 표시형 Fuel gauge	318
<그림3-38>	Tri-state Fuel gauge ·····	320
<그림3-39>	Digital battery와 Electrochemical battery의 차이	321
<그림3-40>	Full-Discharge & Full-Charge Flags	322
<그림3-41>	SMBus battery의 저장된 Data Screenshot	324
	원래의 흑연(A)과 확장된 흑연(B)의 투과전자현미경 사진	
<그림3-43>	Unit Cell and module of the ZEBRA battery	331
<그림3-44>	Aquion Energy의 Sodium-ion analogue battery 구조도	333
<그림3-45>	NaTi2(PO4)3 (NTP)에서 수집된 XRD (a)와 SEM (b, c) Data	334
<그림3-46>	NTP에서 수집된 전기화학적 Data	335
<그림3-47>	8-battery stack의 성능 및 안정성 Data	336
	나트륨 용융염 전지(Na molten salt battery)의 개념도	
<그림3-49>	NaFSA-KFSA 혼합염의 상태도 ·····	339
<그림3-50>	Vanadium Redox Flow Battery (RFB)의 구성 및 작동 개요도	346
	아연-폴리요오드화물(zinc-polyiodide) 전지 개요 및 성능 도표	
	여러 종류의 Capacitor와 회로도상의 표식	
	Capacitor 의 동작원리	
<그림3-54>	Double Layer Capacitor (DLC) 구조 및 동작 개념	354

<그림3-55> Capacitor Type 별 저장원리와 고유한 방전전압곡선	. 355
<그림3-56> 주요 capacitor의 Capacitance/voltage range, 적용 장치 범위	
<그림3-57> 2-electrode configuration의 Double-layer capacitor 구조도 및 작동	
<그림3-58> 에너지저장장치 종류별 에너지 밀도(용량) 대 출력 밀도 그래프	
<그림3-59> 각종 Capacitors/Batteries의 Power Density vs. Energy Density 영역 ········	
<그림3-60> 국제표준에 따른 Supercapacitors의 classes 규정 ···································	
<그림3-61> EDLC 개념도	
<그림3-62> EDLC (Activated carbon electrode) 구조도 ·······	
<그림3-63> LIC(Lithium Ion Capacitor) 개념도 ······	
<그림3-64> Supercapacitor의 Charge/Discharge Profile ······	
<그림3-65> 인도 S.N. 보즈 국립 센터에서 개발된 새로운 Hybrid 전극	
<그림3-66> 연료전지 개념도	
<그림3-67> 연료전지 단위 Cell의 구조도	
<그림3-68> 연료전지 Stack의 구조도	
<그림3-69> Next-Generation Advanced Battery (NGAB) 선두주자 (2016 3/4분기) ········	
<그림3-70> Lithium-air Battery 개념도 ······	
<그림3-71> 리튬연료전지 타입 리튬공기전지 개념도	
<그림3-72> 고체전해질 타입 리튬공기전지 개념도	392
<그림3-73> Gel 타입 리튬공기전지 개념도	
<그림3-74> 차체 뒷부분에 탑재된 알루미늄 공기전지(좌), 알루미늄 공기전지 모듈의 외관(우)…	394
<그림3-75> 고효율 Lithium-Air Battery 전해질의 주사 전자현미경 형상	395
<그림3-76> Li-S battery의 "Shuttle" Mechanism 개략도	397
<그림3-77> 리튬 - 황 배터리의 충/방전 거동	398
<그림3-78> 리튬 -황 배터리의 부피 팽창 수축에 의한 전기적 전도성 파괴	· 400
<그림3-79> 다공성 탄소를 적용한 리튬 - 황 배터리의 전기화학 반응	405
<그림3-80> AAO Template을 적용한 CNF 리튬 - 황 배터리 양극재	· 407
<그림3-81> 양쪽 친매성 고분자 표면처리 전/후 리튬 - 황 배터리 양극재 내부 황 잔존량 변화…	408
<그림3-82> Graphene을 적용한 Li-S 배터리 구조도	· 409
<그림3-83> 외벽 종류 및 존재 유무에 따른 폴리설파이드 용해	· 410
<그림3-84> TiO2를 이용한 요크-쉘의 경우	411
<그림3-85> Bi- Pyramid 형상의 황 입자에 PPY 코팅 적용 (SEM image)	412
<그림3-86> Poly-Aniline 양극과 Poly-Aniline의 부드러운 특성을 이용한 부피 변화 완화	413
<그림3-87> PVP를 이용한 Li-S 양극재 구조	414
<그림3-88> 실리카 첨가제를 이용한 Li-S Battery 양극의 반응 개략도	415
<그림3-89> Celgard(좌측)와 다중벽 탄소 나노튜브(오른쪽)	
<그림3-90> 선택적 멤브레인을 이용한 개략도	
<그림3-91> Lithium-ion Capacitor의 구조와 작동 원리	424

<그림3-92>	리튬이온 프리도핑 방식 비교도	425
<그림3-93> N	Na-ion battery의 작동개념	429
<그림3-94> 기	지금까지 연구된 나트륨 이온전지용 양극재의 전압에 따른 방전용량 비교…	432
<그림3-95> 소	스미토모 화학이 제작 실험한 Na-ion battery의 충/방전 곡선	434
<그림3-96> 역	액체 금속 Battery ·····	435
<그림3-97> F	Flexible Battery 개요 ·····	440
<그림3-98> 역	역오팔 분리막 제조 공정 및 구조 모식도	440
<그림3-99> 성	신개념 2차 전지 양극 활물질 소재 개발 성과 주요 내용	441
<그림3-100>	Flow Battery용 신규 Redox Couple 개발 주요 내용	442
<그림3-101>	R&D 관리 기본 방향	442

Ⅳ. 국내외 고효율 중대형 2차 전지 관련 주요업체 사업전략 …………………………….453

<그림4-1> LG화학의 소형전지 자체 특허 기술'Stack & Folding Technology' 456
<그림4-2> LG화학의 안전성 강화 분리막 SRS(Safety Reinforcing Separator) 단면도 … 457
<그림4-3> 정밀하고 신뢰도 높은 배터리 관리 기술력을 보여주는 BMS 457
<그림4-4> LG화학이 Li-ion Battery를 공급한 xEVs
<그림4-5> LG화학 고유의 Pack 구조의 장점
<그림4-6> LG화학의 Cell Design Flexibility 개념도
<그림4-7> LG화학의 Li-ion Battery 채용 ESS 설치 지역461
<그림4-8> LG화학에 대한 Global 평가
<그림4-9> 가정용 Solution의 기능 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<그림4-10> 통신기지국을 위한 Off-grid 솔루션과 Back-up power용 기능 484
<그림4-11> 코캄의 SLPB 특성 도표
<그림4-12> 코캄의 SLPB Cell과 고유 셀 제작 기술인 Z-folding 설계 496
<그림4-13> 코캄의 Battery Module & Pack
<그림4-14> Kokam Rack System (KRS)의 구조
<그림4-15> KCE System의 구성 및 특성
<그림4-16> 코캄의 Community Energy Storage 특성 및 제원 ·······509
<그림4-17> SK Innovation의 Lithium-ion Cell 특성 (고용량/고출력) ····································
<그림4-18> 세방전지의 밀폐식 Ni-MH Battery 구조도
<그림4-19> LS 엠트론 울트라캐패시터 셀 단면도
<그림4-20> 비나텍의 Supercapacitor 제품개발 로드맵
<그림4-21> 차량시동용 UltraPhosphate Lithium-ion Battery의 저온시동 성능 548
<그림4-22> -45℃에서의 100% Depth Of Discharge Cycling
<그림4-23> PCC Thermal Management Technology 개념도
<그림4-24> AllCell의 PCC Thermal Management Technology와 Cycle Life
<그림4-25> LTO Cells 2C 충/방전 성능변화 도표 (Cycle Life @55℃, 100% DoD) 569

<그림4-26> NMC/Graphite 기반 ESS의 작동 변수 개요도	
<그림4-27> LITARION® Electrodes의 주요 특성	
<그림4-28> SEPARION®의 주요 특성	
<그림4-29> LITACELL® Cells (LC-44)의 주요 특성	
<그림4-30> LITACELL® Cells (LC-44)의 주요 특성	
<그림4-31> iBMSTM Battery Management System의 주요 특성	
<그림4-32> Moxie+ Battery Module 외형 및 특징	
<그림4-33> Vigor+ Battery Pack 외형 및 특징	
<그림4-34> Secure+ Battery System 및 MHPS	
<그림4-35> T100 Secure+ Battery Management System	
<그림4-36> Industry Standards 테스트 결과	
<그림4-37> U Charge® (LiFeMgPO4 Cathode)의 Cycle Life 비교	
<그림4-38> BYD Lithium-Ion Battery의 특성 그래프	
<그림4-39> Manganese Spinel Structure	
<그림4-40> Laminated cell Structure	
<그림4-41> Laminated cell structure의 열발산 특성	
<그림4-42> Battery Pack 회로 구성도 및 적용된 Battery Pack631	
<그림4-43> EHW5 Battery cell/module 외형 및 특성	
<그림4-44> EHW5 셀의 10초간 방전/충전 출력성능 비교636	
<그림4-45> EHW5 셀 충/방전 Cycle 시간에 따른 용량 및 출력성능 유지율 그래프 636	
<그림4-46> "HV application"과 "Cycle application" VRLA battery	
<그림4-47> Panasonic Flexible Li-ion Battery의 Stacked Electrode 구조	
<그림4-48> Panasonic Flexible Li-ion Battery의 충/방전 특성	
<그림4-49> PEVE의 Battery 기술 R&D 및 적용 개념도652	
<그림4-50> PEVE의 Battery Pack의 내부 구성	
<그림4-51> HEV용 NiMH Battery 셀의 특성 그래프653	
<그림4-52> Battery System Block Diagram	