목차

1. 터치	스크린의 정의와 분류	25
1-1.	정의	25
1-2.	터치스크린 분류	25
1)	저항막(Resistive) 방식 ······	26
2)	정전용량(Capacitive) 방식 ······	27
3)	초음파(SAW: Surface Acoustic Wave) 방식	28
4)	적외선(IR: InfraRed) 방식 ······	28
5)	광학(Optical) 방식 ·····	29
2. 터치	스크린의 구성요소	32
2-1.	터치스크린의 핵심 구성 3 요소	32
1)	터치패널 (touch panel)	32
2)	콘트롤러 IC (Controller IC)	33
3)	드라이버 소프트웨어	34
2-2.	멀티터치 스크린	34
1)	멀티터치 개요	34
2)	멀티터치 개발동향	35
2-3.	저항막 방식과 정전용량 방식 비교	37
3. 터치	스크린 산업의 Value chain 및 원가구조	39
3-1.	터치스크린 산업의 Value chain ·····	39
1)	정전용량 방식 증가에 따른 Value chain 변화	39
2)	터치스크린 패널의 원가구조	40
4. 터치	스크린 산업 국내외 동향	42
4-1.	국내외 터치스크린 관련 시장 동향과 전망	42
1)	터치스크린 패널 시장	42
	(1) 세계 터치스크린 패널 시장	42

(2) 주요 기술분야별 동향	·· 46
(3) 정전용량 방식의 터치스크린 시장 동향	·· 47
2) 터치스크린 관련 부품,소재 시장 동향	·· 49
(1) 개요	·· 49
(2) ITO필름 시장 ·····	·· 51
(3) 컨트롤러 IC 시장	·· 53
(4) 패널 및 모듈 시장	·· 53
4-2. 터치스크린 관련 기술 동향	·· 57
1) 개요	·· 57
2) ITO필름 기술 동향	·· 58
3) 터치모듈/패널 기술동향	·· 60
(1) 저항막 방식의 기술 동향	·· 61
(2) 정전용량 방식의 기술 동향	·· 62
5. 정부지원 유망 터치기술 개발 전략	·· 64
5-1. 모바일기기용 감성인터페이스 멀티레벨 입력 햅틱-펜 개발	·· 64
1) 기술개발 개요	·· 64
2) 연구목표 및 내용	·· 65
3) 관련기술 동향	·· 67
(1) 멀티레벨 및 멀티터치 입력기술	·· 67
(2) Haptic Actuator 구동제어 기술	·· 69
4) 국내 멀티레벨 입력기술 평가 및 개발계획	·· 70
5-2. 개방형 모바일 장치를 위한 멀티센서 프레임워크 기술 개발	·· 74
1) 기술개발 개요	·· 74
(1) 개념 및 정의	·· 75
(2) 지원 필요성	·· 75
2) 연구목표 및 내용	·· 76
(1) 최종 목표	·· 76
(2) 확보기술 내용	·· 77
(3) 연도별 목표 및 내용	·· 78
(4) 연구기간 및 연구비	·· 81
3) 특허현황 및 대응방안	·· 82
4) 기대효과	·· 82
(1) 기술적 기대효과	·· 82
(2) 경제적 기대효과	·· 83
(3) 기타 기대효과	·· 84
5-3. 시-촉각 융합 디스플레이 기술 및 렌더링 엔진 개발	·· 84
1) 기술개발 개요	·· 84

(1) 개념 및 정의	
(2) 정부지원 필요성	
2) 관련 기술 동향	
(1) 소형 햅틱 장치	
(2) 시촉각 디스플레이	
(3) 기술적 중요도	
3) 연구목표 및 내용	
(1) 최종 목표 및 내용	
(2) 연도별 기술개발 목표 및 내용	
(3) 연구기간 및 연구비	
4) 연구개발결과의 활용방안 및 기대효과	
(1) 연구개발 결과의 활용방안	
(2) 기대효과	
5-4. 윈도우 일체형 20인치급, 1mm이하 두께의 터치센서 개발·	
1) 기술개발 개요	
(1) 개념 및 정의	
(2) 정부지원 필요성	
2) 관련 기술동향	
(1) 터치 센서용 박막소재 및 기판 기술	
(2) 감성터치 기능을 가지는 대면적 터치센서 기술	
(3) 기술수준 평가	
(4) 기술별 기술 성숙정도 및 TRL	······ 112
(5) 기술적 중요도	······ 112
(6) 해당 과제 특허동향 분석	
(7) 기술개발 장애요인	
(8) 기술개발 및 사업화 성공가능성	
3) 연구목표 및 내용	
(1) 최종 목표	
(2) 기술별 최종 연구목표 및 연구내용	
(3) 연도별 목표 및 내용	
(4) 연구기간 및 연구비	
4) 연구개발 결과의 활용방안 및 기대효과	
(1) 연구개발 결과의 활용방안	
(2) 기대효과	
5-5. Sub-mm급 기능성 멀티터치 디스플레이 개발	
1) 기술개발 개요	
(1) 개념 및 정의	

(2) 기술개발 배경 및 필요성
) 연구목표 및 내용
(1) 최종 목표
(2) 개발 내용
(3) 연도별 목표 및 내용
(4) 연구기간 및 연구비

1. DID(Digital Information Display)시장
1-1. DID 개념 및 특징
1-2. 세계 DID 시장동향
1-3. 주요 DID 업체별 사업 동향
1) 국내 주요 업체 동향
(1) 삼성전자
(2) LG전자
(3) 현대아이티
(4) KT
(5) 아이존 DID160
(6) 비티씨정보통신
2) 해외 주요 업체 동향
(1) AT&T
(2) NTT
(3) 소프트뱅크
(4) 파나소닉
(5) NEC
(6) 구글
1-4. DID 적용사례
1) 영화관
2) 지하철
3) 버스 및 버스정류장
4) 예술작품과의 결합
5) 아파트 단지(공동주택)
6) 대학교 캠퍼스
7) 공항
8) 병원
9) 기타 적용사례

(1) 한강 밤섬 철새안내 시스템 DID 이미지	180
(2) 인천 세계도시축전에 활용된 DID 이미지	180
(3) 재래시장 현대화사업에 활용되는 DID 이미지	181
(4) 두산인프라코아 실내 DID이미지	181
(5) 차이나타운에 소재한 DID 이미지	182
2. 전자칠판(IWB:Interactive Whiteboard) 시장	183
2-1. 개념 및 특징	183
2-2. 전자칠판 시장 동향	185
1) 국내 시장 동향	185
2) 세계 시장동향	186
2-3. 국내 업체 및 제품동향1	190
1) 이솔정보통신	190
2) 컴버스테크	195
3) 오맥스	200
4) 아하정보통신	203
5) 모든넷	209
6) 퍼시스	211
7) 빛과 함께	213
3. 스마트폰 시장동향	219
3-1. 개념 및 특징	219
1) 개념	219
2) 특징	221
(1) 모바일 OS(Operating System)	221
(2) 애플리케이션 및 콘텐츠	221
(3) 터치스크린	221
3-2. 스마트폰 시장동향	222
1) 국내 시장동향	222
2) 해외 시장	224
3-3. 스마트폰 하드웨어 개발동향	226
1) 디스플레이	226
2) 터치스크린 기술	226
3) 모바일 CPU 기술	227
3-4. 터치스크린 채용 전망	227
3-5. 주요 스마트폰 업체 사업 동향	229
1) 국내업체	229
2) 지역별 해외 업체 동향	230
4. 스마트패드(태블릿PC) 시장동향 2	233

4-1. 개념과 특징	233
1) 개념 및 종류	233
2) 스마트패드의 특징2	235
(1) 간편한 휴대성	235
(2) 터치스크린 방식	236
(3) 높은 사양	237
(4) 비교적 큰 화면	237
4-2. 스마트패드 시장동향	238
4-3. 스마트패드 개발동향	240
4-4. 스마트패드 주요 업체 동향	243

1. 국내 주요 생산업체 동향
1-1. 개요
1-2. 국내 주요 기업 동향
1-3. 주요 사업분야별 기업동향
1) 터치모듈/패널 분야 기업동향
(1) (주)이엘케이
(2) 디지텍시스템즈
(3) 시노펙스
(4) 협진아이엔씨
(5) 비케이엘씨디259
(6) DK유아이엘 ······261
(7) 한국성전
(8) (주)금영264
(9) (주)이노터치테크놀로지
(10) 유진디지털268
(11) 에스맥
(12) (주)미래디피271
(13) (주)태양기전
(14) 아이티엠276
(15) (주)넥시오 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2) 컨트롤IC 분야 기업동향
(1) (주)티엘아이282
(2) (주)에이디반도체
3) ITO필름 분야 기업동향

(1) 상보
(2) SKC하스디스플레이필름290
(3) (주)맥스필름
(4) (주)서피스텍
4) ITO유리 분야 기업동향
(1) (주)나우테크
(2) (주)플라웍스
5) 터치센서 분야 기업동향
(1) (주)켐트로닉스
(2) (주)미성포리테크
(3) (주)멜파스
(4) (주)하이디스터치스크린
6) 기타 관련 기업동향
(1) (주)탑나노시스
(2) (주)화영시스템즈
(3) (주)코텍
(4) (주)뉴옵틱스
(5) (주)드림텍
(6) (주)모린스
(7) (주) 세화전자
(8) (주)토비스
(9) (주)한국터치스크린
(10) (주)갤럭시아디스플레이
(11) (주)일진디스플레이
2. 해외 주요 생산업체 동향
2-1. 주요 사업분야별 해외 기업동향
1) ITO 필름 생산업체 동향345
2) 강화 글라스 생산업체 동향
3) 콘트롤 IC 생산업체 동향346
4) 터치스크린 패널/모듈 생산업체 동향
2-2. 주요국별 생산업체 동향
1) 일본기업
(1) Nitto-Denko
(2) Oike
(3) Toray
(4) Suzutora(일본)
(5) Asahi Glass ······358

(6) NEC	
(7) ALPS	
(8) Nissha ·····	
(9) PED (Panasonic Electronic Device)	······ 374
(10) Gunze(일본) ······	
2) 미국 및 영국 기업동향	
(1) Corning(미국) ······	
(2) Synaptics	
(3) Cypress ······	
(4) 3M ·····	
3) 대만 기업 동향	
(1) Young Fast ·····	
(2) J-Touch	
(3) AUO	

표목차

I. 터치스크린 산업 시장과 기술개발 동향
<표1-1> 터치스크린 기술별 특성 비교
<표1-2> In-Cell형 터치패널의 비교
<표1-3> 저항막 방식과 정전용량 방식의 비교
<표1-4> 세계 터치스크린 패널 시장전망43
<표1-5> 터치스크린 패널 시장 전망
<표1-6> 터치스크린 패널 시장 전망
<표1-7> 터치스크린 패널 시장 전망 45
<표1-8> 정전용량 방식 전세계 시장규모 추이48
<표1-9> 국내외 터치스크린 산업 분야별 주요 기업
<표1-10> 세계 터치스크린 시장 점유율
<표1-11> 터치스크린 패널 업체별 점유율
<표1-12> 터치패널 구성 부재료 세계시장
<표1-13> 전극기판에 사용되는 ITO필름 및 강화글래스의 시장 추이56
<표1-14> 주요 품목별 기술수준 분석
<표1-15> ITO 대체 신소재 물질 개발 현황
<표1-16> 멀티레벨 입력기술 관련 국가별 특허 등록현황65
<표1-17> 연도별 목표 및 내용66
<표1-18> 기술수준 및 격차
<표1-19> 멀티레벨 입력기술개발 평가항목
<표1-20> 멀티레벨 입력기술개발 1차년도(2011년) 계획72
<표1-21> 멀티레벨 입력기술개발 2차년도(2012년) 계획73
<표1-22> 감성형 햅틱관련 예상 시장점유율 추이
<표1-23> 감성형 햅틱관련 예상 시장매출액 추이
<표1-24> 응용분야와 내용
<표1-25> 기술격차 축소 목표
<표1-26> TAXEL Surface의 미국특허에서 국가별 기술수준 순위 89

Ⅱ. 확대되는 터치스크린 응용시장 동향과 적용사례	43
<표2-1> DID의 2가지 핵심 비즈니스 요소1	145
<표2-2> 세계 DID 시장전망	146
<표2-3> KT의 DID 관련 솔루션 브랜드명 및 특징	159
<표2-4> AT&T의 DID를 구성하는 3가지 요소	162
<표2-5> NTT의 디지털 사이니지 추진사례	163
<표2-6> 매체별 특성평가	175
<표2-7> 판서 소프트웨어 e-Mouse의 주요기능]	194
<표2-8> e-Pen의 버튼별 기능]	195
<표2-9> LCD/PDP 전자칠판 제품 Specification	197
<표2-10> 디지털클래스 시스템 제품 사양]	199
<표2-11> 아하정보통신의 모니터형 전자칠판 Specification	205
<표2-12> 아하정보통신의 프론트형 전자칠판 specification	206
<표2-13> 아하정보통신의 리어형 전자칠판 specification	207
<표2-14> 아하정보통신의 일체형 판서 디스플레이 'Maestro Pro?	208
<표2-15> 압력인식(저항막) 방식이 적용된 DataBoardTM	215
<표2-16> 적외선 방식이 적용된 DataBoardTM 제품 Specification?	216
<표2-17> 스마트폰과 일반 핸드폰의 비교	220
<표2-18> OS 판매 대수 전망 2	225
<표2-19> 국내 통신사업자 동향	230
<표2-20> 태블릿PC의 종류 및 제품 예 - 형태 기준	234
<표2-21> 주요 스마트패드 스펙-MWC2011 출시 모델2	242

Ⅲ. 터치스크린 관련 부품, 소재 생산업체 사업동향	247
<표3-1> 국내 터치스크린 관련 업체 현황	250
<표3-2> (주)이엘케이 일반현황	252
<표3-3> (주)디지털시스템즈 일반현황	254
<표3-4> (주)시노펙스 일반현황	256
<표3-5> (주)협진아이엔씨 일반현황	258
<표3-6> (주)비케이엘씨디 일반현황	260

<표3-7> (주)디케이유아이엘 일반현황	262
<표3-8> (주)한국성전 일반현황	264
<표3-9> (주)금영 일반현황	265
<표3-10> (주)이노터치테크놀로지 일반현황	266
<표3-11> (주)유진디지털 일반현황	268
<표3-12> (주)에스맥 일반현황	269
<표3-13> (주)미래디피 일반현황	272
<표3-14> (주)태양기전 일반현황	274
<표3-15> 태양기전의 터치윈도우 관련 기술보유 현황	275
<표3-16> (주)아이티엠 일반현황	276
<표3-17> 4선 아날로그 저항막 방식이 적용된 터치패널 제품	277
<표3-18> (주)넥시오 일반현황	279
<표3-19> (주)티엘아이 일반현황	283
<표3-20> (주)에이디반도체 일반현황	285
<표3-21> (주)상보 일반현황	288
<표3-22> (유)SKC하스디스플레이필름 일반현황	290
<표3-23> (주)맥스필름 일반현황	294
<표3-24> (주)서피스텍 일반현황	297
<표3-25> (주)나우테크 일반현황	299
<班3-26> Touch Panel Specification	301
<표3-27> (주)플라웍스 일반현황	302
<표3-28> (주)켐트로닉스 일반현황	305
<표3-29> (주)미성포리테크 일반현황	309
<표3-30> (주)멜파스 일반현황	312
<표3-31> (주)하이디스터치스크린 일반현황	317
<표3-32> (주)탑나노시스 일반현황	319
<표3-33> (주)화영시스템즈 일반현황	321
<표3-34> (주)코덱 일반현황	323
<표3-35> (주)뉴옵틱스 일반현황	328
<표3-36> (주)드림텍 일반현황	330
<표3-37> (주)드림텍 생산거점 현황	331
<표3-38> (주)모린스 일반현황	332
<표3-39> (주)세화전자 일반현황	334
<표3-40> (주)토비스 일반현황	336
<표3-41> (주)한국터치스크린 일반현황	338
<표3-42> (주)갤럭시아디스플레이 일반현황	341
<표3-43> (주)일진디스플레이 일반현황	342

<표3-44>	해외 터치스크린 산업 분야별 주요 기업	349
<표3-45>	Nitto-Denko 일반현황 ····································	349
<표3-46>	Oike 일반현황	352
<표3-47>	Toray 일반현황	353
<표3-48>	Suzutora 일반현황 ····································	356
<표3-49>	Asahi Glass 일반현황 ····································	358
<표3-50>	Asahi Glass 지역별 현황 ···································	359
<표3-51>	NEC 일반현황	362
<표3-52>	ALPS 일반현황	365
<班3-53>	Nissha 일반현황3	370
<표3-54>	PED 일반현황	374
<班3-55>	Gunze 일반현황	376
<표3-56>	Corning 일반현황 ····································	378
<표3-57>	Synaptics 일반현황 ····································	380
<班3-58>	Cypress 일반현황 ····································	384
<班3-59>	3M 일반현황	388
<표3-60>	Young Fast 일반현황3	395
<표3-61>	J-Touch 일반현황 ····································	398
<표3-62>	J-Touch 주요 생산제품 및 생산능력	399
<표3-63>	AUO 일반현황	101

그림목차

I. 터치스크린 산업 시장과 기술개발 동향
<그림1-1> 터치스크린 기술별 분류
<그림1-2> 저항막 방식 구조 및 작동원리
<그림1-3> 정전용량 방식 구조 및 작동원리
<그림1-4> 초음파(SAW) 방식 구조 및 작동원리. 활용분야
<그림1-5> 적외선(IR) 방식 구조 및 작동원리. 활용분야
<그림1-6> 광학(Optical) 방식 구조 및 작동원리. 활용분야
<그림1-7> 터치스크린 패널 사이즈별 적용기술
<그림1-8> 터치스크린을 구성하는 요소
<그림1-9> 멀티터치 개요도
<그림1-10> 터치스크린 산업 가치사슬 및 주요업체 (저항막 방식) 39
<그림1-11> 터치스크린 산업 가치사슬 및 주요업체 (정전용량 방식) 40
<그림1-12> 터치스크린 패널 원가구조41
<그림1-13> 터치스크린 패널 시장 전망 (수량기준) 42
<그림1-14> 터치스크린 패널 시장 전망 (금액기준)43
<그림1-15> 터치스크린 패널 시장 전망 (금액 : 억엔) 44
<그림1-16> 터치스크린 패널 시장 전망 (수량 : 만매)
<그림1-17> 정전용량 방식 터치스크린 연평균 성장률 추이 47
<그림1-18> 기술별 터치패널 시장 전망 48
<그림1-19> 삼성전자의 정전용량방식 터치스크린 모듈 수요 추이 49
<그림1-20> 전 세계 ITO 필름 시장 전망
<그림1-21> ITO 필름 수요·공급 추이
<그림1-22> 정전용량 방식 ITO필름 공급업체별 시장점유율
<그림1-23> 삼성전자 공급업체 및 점유율 저항막 방식 정전용량 방식54
<그림1-24> LG전자 공급업체 및 점유율
<그림1-25> 터치패널 구성 부재료 세계시장
<그림1-26> 멀티레벨 입력을 구현할 수 있는 햅틱-펜64

<그림1-27>	멀티터치 및 멀티레벨 입력이 가능한 패턴형태 예시65
<그림1-28>	일본 와콤사의 태블릿 패드 'BamBoo'
<그림1-29>	MS사의 Manual Deskterity 동작상황 ·······68
<그림1-30>	RIM사의 감압식/정전식 하이브리드 터치스크린 도면69
<그림1-31>	햅틱 및 Feedback 기술의 변천 추이
<그림1-32>	기술개요도
<그림1-33>	스마트폰 판매 전망
<그림1-34>	촉각 입출력 기반 TAXEL surface 기술 개념도 85
<그림1-35>	미국등록특허에서의 국가별 기술력 지수90
<그림1-36>	특허맵: TAXEL Surface 특허분포도
<그림1-37>	TAXEL Surface 기술 분야 특허의 세부기술별 출원 비중 93
<그림1-38>	전 세계 주요 출원인 Top 1094
<그림1-39>	터치 센서 발전의 메가 트랜드
<그림1-40>	윈도우 일체형 대면적 슬림 터치 센서 기술 개념도
<그림1-41>	정전용량방식의 필름 투명도전막 구조
<그림1-42>	터치패널의 기술 방식별 시장 점유율
<그림1-43>	대면적 멀티터치 이미지
<그림1-44>	터치센서의 미래 응용분야
<그림1-45>	국내외 기업의 관련 특허수 비교
<그림1-46>	국내외 관련 특허의 유사도 비교
<그림1-47>	터치 센서 시장 -서플라이체인의 변화
<그림1-48>	초슬림 기능성 멀티 터치 디스플레이 구조 (예시)
<그림1-49>	디스프레이 슬림화 기술 (예시)

Ⅱ. 확대되는 터치스크린 응용시장 동향과 적용사례
<그림2-1> 상하이엑스포 한국관 DID(왼쪽)과 DID 구성요소(오른쪽) 143
<그림2-2> 세계 DID 시장 및 DID용 LCD 시장전망
<그림2-3> 세계 DID 시장전망(금액)
<그림2-4> 국내 DID 하드웨어 및 콘텐츠 시장전망
<그림2-5> 세계 DID 시스템 판매비용과 세계 DID 콘텐츠 제작비용 147
<그림2-6> 일본 DID 시장 전망
<그림2-7> 삼성전자 DID제품 이미지
<그림2-8> 일본에서 출시되는 삼성전자 DID제품 이미지
<그림2-9> LG전자 DID제품 이미지
<그림2-10> 현대아이티 DID제품 및 솔루션 구상도
<그림2-11> 현대아이티 DID제품 이미지
<그림2-12> KT의 디지털 사이니지 사업 개념도

<그림2-13>	KT의 디지털 사이니지 활용 분야	156
<그림2-14>	KT의 디지털사이니지 개념도	157
<그림2-15>	디지털사이니지 시스템 구성도	157
<그림2-16>	KT의 디지털사이니지 솔루션 i-Frame 개념도	158
<그림2-17>	KT의 디지털사이니지 솔루션 i-Frame 서비스 흐름도	158
<그림2-18>	아이존DID 제품 이미지	160
<그림2-19>	비티씨정보통신 DID제품 이미지	161
<그림2-20>	AT&T DID제품 이미지 ······	162
<그림2-21>	얼굴인식 소프트웨어(왼쪽)과 소형 DID(오른쪽)	164
<그림2-22>	후쿠오카에 위치한 DID 이미지	165
<그림2-23>	파나소닉의 HAI 구성도	166
<그림2-24>	NEC의 디지털사이니지 및 기능 구성도	167
<그림2-25>	DID에 적용되는 정보성 콘텐츠 및 홍보성 콘텐츠	169
<그림2-26>	건물 유리공간을 DID로 활용과 모바일과 연동되는 DID	169
<그림2-27>	롯데시네마 상영관의 DID 이미지	170
<그림2-28>	지하철 곳곳에 위치한 DID 이미지	171
<그림2-29>	버스 및 버스정류장에 위치한 DID 이미지	172
<그림2-30>	Winmate사의 투어버스 DID 솔루션 이미지	173
<그림2-31>	Omnivex사의 버스 내부에 장착된 DID 이미지	173
<그림2-32>	예술과 결합한 DID 이미지	174
<그림2-33>	아파트 내 위치한 DID(왼쪽) 및 콘텐츠 구성(오른쪽)	175
<그림2-34>	한국 대학신문사의 대학교 캠퍼스에 위치한 DID 이미지	176
<그림2-35>	대학교 캠퍼스에 위치한 DID 이미지	177
<그림2-36>	인천공항 철도에 설치될 DID 이미지	178
<그림2-37>	김포공항에 설치된 DID 아트월	179
<그림2-38>	메디프라임 서비스 개념도	179
<그림2-39>	한강 밤섬 철새안내 시스템 DID 이미지	180
<그림2-40>	인천 세계도시축전에 활용된 DID 이미지	180
<그림2-41>	전자칠판 구성요소	183
<그림2-42>	모니터형 전자칠판 개념도	184
<그림2-43>	판서 소프트웨어 EZ-Masters 이미지	184
<그림2-44>	프론트형 전자칠판 이미지	184
<그림2-45>	리어형 전자칠판 및 적용사례	185
<그림2-46>	일체형 전자칠판 리어형(왼쪽) 및 프론트형(오른쪽) 이미지	185
<그림2-47>	국내 양방향 전자칠판(IWB) 시장규모 추이	186
<그림2-48>	세계 양방향 전자칠판(IWB) 및 프로젝터 시장규모 추이	187
<그림2-49>	세계 전자칠판 시장현황	187

<그림2-50>	중국 양방향 전자칠판(IWB) 판매 추이 (수량: 만대)	188
<그림2-51>	2009년 브랜드별 중국 전자칠판 시장점유율	188
<그림2-52>	전자칠판 SMARTboard 600i3 이미지	189
<그림2-53>	영국 양방향 전자칠판(IWB) 판매 추이	190
<그림2-54>	프론트형 전자칠판 단독형(왼쪽) 및 다목적형(오른쪽)	191
<그림2-55>	판서모니터형 전자칠판 이미지	192
<그림2-56>	듀얼터치(왼쪽) 및 제스처인식(오른쪽) 기능	192
<그림2-57>	리어형 전자칠판 이미지	193
<그림2-58>	평판형 전자칠판 이미지	193
<그림2-59>	e-Pen 이미지 ·····	195
<그림2-60>	컴버스테크의 전자칠판 특징	196
<그림2-61>	컴버스테크의 프론트형 전자칠판 이미지	198
<그림2-62>	디지털클래스 시스템 제품 구성 이미지	199
<그림2-63>	오맥스 사업영역	200
<그림2-64>	타사 제품(왼쪽)과 오맥스 PDP/LCD(오른쪽) 전자칠판 비교 ··	201
<그림2-65>	Front 전자칠판 제품이 적용된 멀티보드 이미지	202
<그림2-66>	오맥스의 판서모니터 기능	202
<그림2-67>	오맥스의 Rear 전자칠판 제품 이미지	203
<그림2-68>	아하정보통신의 모니터형 전자칠판 이미지	204
<그림2-69>	모니터형 전자칠판에 적용가능한 칠판 솔루션	204
<그림2-70>	프론트형 전자칠판 '사이보스 골드' 이미지	205
<그림2-71>	리어형 전자칠판 '사이보스 스마트 클래식' 이미지	206
<그림2-72>	일체형 판서 디스플레이 'Maestro Pro'의 이미지 및 활용용도·	208
<그림2-73>	모든넷의 판서모니터의 강의 솔루션 구조도	210
<그림2-74>	모든넷의 사이버보드(Rear형) 이미지 및 구성요소	210
<그림2-75>	퍼시스의 Rear형 전자칠판 이미지	211
<그림2-76>	Rear형 전자칠판제품에 적용되는 범용앰프 및 벽부착형 스피커	212
<그림2-77>	퍼시스의 Front형 85인치 전자칠판 이미지	213
<그림2-78>	퍼시스의 Front형 95인치 전자칠판 이미지	213
<그림2-79>	DataBoardTM 구성도 ······	214
<그림2-80>	LCD 적용 제품(왼쪽) 및 Hi-Crystal Screen 적용 제품(오른쪽)	215
<그림2-81>	DataBoardTM 의 구성요소 ······	217
<그림2-82>	빛과함께의 DB-Edu 원격교육 솔루션	217
<그림2-83>	DataBoardTM 시스템 구성요소 ······	218
<그림2-84>	스마트폰 구성	219
<그림2-85>	스마트폰과 일반폰의 포지셔닝 비교	220
<그림2-86>	2010년 국내 스마트폰 사용자수 추이	222

<그림2-87> 국내 휴대폰 판매 비중 및 통신사별 스마트폰 판매 비중 …… 223
<그림2-88> 국내 스마트폰 사용자수 추이 …… 223
<그림2-89> 전세계 휴대폰 시장규모 추이 …… 224
<그림2-90> 전세계 스마트폰 시장규모 추이 …… 225
<그림2-91> 터치스크린 패널이 적용되는 application 수량 추이 …… 227
<그림2-92> 휴대전화 및 터치폰의 생산대수 및 적용률 …… 228
<그림2-93> 전세계 미니 노트북 지역별 출하량 전망, 2007-2014 …… 240

Ⅲ. 터치스크린 관련 부품, 소재 생산업체 사업동향
<그림3-1> 한국성전 매출 추이 및 2009년 매출구성
<그림3-2> 금영이 생산하는 주요생산품
<그림3-3> 금영의 window & Front panel 공정과정
<그림3-4> 5선 저항막 방식 터치스크린 구조도 및 적용제품
<그림3-5> 에스맥의 공정소인화 기기
<그림3-6> 미래디피의 터치스크린 패널 개념도
<그림3-7> 터치스크린 패널 적용범위 및 미래디피의 적용제품
<그림3-8> 5선 아날로그 저항막 방식 구조도 및 적용 제품
<그림3-9> 멀티패널(디지털) 방식 구조도
<그림3-10> 터치패널 콘트롤러(좌)와 터치모니터(우)
<그림3-11> 적외선 방식 터치기술 개념도
<그림3-12> 초음파 방식 터치기술 개념도
<그림3-13> 적외선터치스크린 이 적용된 Digital Information Display 281
<그림3-14> E-White board
<그림3-15> 야외 설치된 다양한 적외선터치스크린 방식이 적용된 제품 … 282
<그림3-16> ROIC 기술 개념도 ······ 284
<그림3-17> 20채널 터치센서 TS20(위) 터치센서 모듈(아래)
<그림3-18> (주)상보의 사업범위
<그림3-19> 탄소나노튜브(CNT) 필름 구조도
<그림3-20> 탄소나노튜브(CNT) 필름의 강점
<그림3-21> Backlight Unit의 역할 및 모식도
<그림3-22> Backlight Unit 구성 및 기능
<그림3-23> 확산필름의 구조
<그림3-24> 반사필름의 구조
<그림3-25> Lamp Reflector 구조
<그림3-26> 맥스필름의 ITO필름 구조
<그림3-27> 롤투롤(Roll-to-Roll) 기반 스퍼터(Sputter) 장비
<그림3-28> 필름 드라이 머신 이미지

<그림3-29>	서피스텍의 정전용량방식 구조 및 특성	298
<그림3-30>	나우테크의 보유설비 이미지	300
<그림3-31>	나우테크의 ITO 코팅유리 생산공정	301
<그림3-32>	프라웍스의 증착원리 이미지	303
<그림3-33>	프라웍스의 IAR(Ion Assisted Reaction) 표면처리 기술 개념도	304
<그림3-34>	In-Line Sputtering과 Roll to roll Sputtering System	304
<그림3-35>	프라웍스의 ITO Glass 이미지	305
<그림3-36>	켐트로닉스의 SMS 및 Concurrent 터치키 기능	307
<그림3-37>	켐트로닉스의 Touch Sensitive Control 및 Wheel Touch Key	307
<그림3-38>	켐트로닉스의 Slide Touch Key 및 패턴인식 알고리즘	308
<그림3-39>	정전용량 터치센서의 구동원리	308
<그림3-40>	켐트로닉스의 터치스크린 솔루션	309
<그림3-41>	미성포리테크의 0.03T 터치스크린(좌)과 촉각센서(우)	311
<그림3-42>	촉각센서의 활용분야	312
<그림3-43>	TPS와 DPW 구조 비교 ······	314
<그림3-44>	회전동작, 집게동작, 넘기기동작, 손바닥 터치	315
<그림3-45>	MMS-100센서칩 원리 및 활용	316
<그림3-46>	정전압력센서 방식의 터치스크린 모듈	318
<그림3-47>	하이디스 터치스크린의 터치콘트롤 IC	318
<그림3-48>	탑나노시스의 전도성 투명필름 TopTransTM 구조	320
<그림3-49>	적외선 터치기술 이미지	322
<그림3-50>	적외선 터치기술이 적용된 제품	323
<그림3-51>	코덱의 5년간 주요 재무 추이	325
<그림3-52>	저항막 방식 기술 및 제품	325
<그림3-53>	정전용량 방식 기술과 활용사례	326
<그림3-54>	Near Field Imaging 방식 기술과 활용사례	326
<그림3-55>	적외선 방식 기술과 활용사례	327
<그림3-56>	Optical 방식 기술과 활용사례	327
<그림3-57>	뉴옵틱스의 LCD 모듈 구조도	329
<그림3-58>	노트북용 BLU, LCD모니터용 BLU, LCD모니터용 BLU	329
<그림3-59>	터치스크린 패널(왼쪽)과 터치센서키 PBA	331
<그림3-60>	모린스의 터치윈도우 제품(저항막 방식) 구조도	333
<그림3-61>	아날로그 4선 저항막 방식과 5선 저항막 방식 개념도	339
<그림3-62>	정전용량 방식 개념도 및 활용제품	340
<그림3-63>	한국터치스크린의 터치콘트롤러, 칩, 드라이버	340
<그림3-64>	일진디스플레이의 매출구성 현황	343
<그림3-65>	사파이어 웨이퍼(왼쪽) 및 TSP(오른쪽)의 수출·내수구성 비율·	343

<그림3-66>	일진디스플레이의 터치 스크린 패널 구성도	344
<그림3-67>	Nitto-Denko 매출액 추이	350
<그림3-68>	Nitto-Denko 의 Web Handling 기술 및 박막 기술	351
<그림3-69>	Nitto-Denko 의 광학필름 구조도	351
<그림3-70>	Oike 의 건식코팅(위) 및 습식코팅(아래) 구조도	352
<그림3-71>	Oike 의 광학필름이 적용된 예	353
<그림3-72>	Toray의 "Innovation by Chemistry" R&D 분야	355
<그림3-73>	Suzutora의 스퍼터링 필름 ·····	357
<그림3-74>	Suzutora의 스퍼터링 필름이 적용된 제품	357
<그림3-75>	Asahi Glass 의 Display제품에 적용되는 기술 개념도	360
<그림3-76>	Asahi Glass Display 제품 구성도	361
<그림3-77>	Asahi Glass Display 의 CRT 기술의 적용된 제품	361
<그림3-78>	NEC의 장기계획 Vision 2017 구상도	362
<그림3-79>	NEC의 3년간 매출(왼쪽) 및 순이익(오른쪽) 추이	363
<그림3-80>	NEC 의 통합솔루션 PanelDirector	364
<그림3-81>	NEC의 TWINPOS5500Ui ······	365
<그림3-82>	ALPS 의 제품개발 전략	366
<그림3-83>	포인팅 디바이스 GlidePointTM 의 작동원리	367
<그림3-84>	ALPS의 Haptic CommanderTM 반응	367
<그림3-85>	차량에 적용되는 Haptic CommanderTM	368
<그림3-86>	몸짓으로 작동하는 TV	368
<그림3-87>	ALPS의 미세가공기술	369
<그림3-88>	6년간 매출추이(왼쪽)과 2010년 매출 비중(오른쪽)	371
<그림3-89>	QTC 기술의 원리 및 구조	372
<그림3-90>	TouchWindow 기술 개념도	373
<그림3-91>	Classic 기술 개념도 ······	373
<그림3-92>	FineTouch 기술이 적용된 제품	374
<그림3-93>	Capacitive 기술 개념도 ······	374
<그림3-94>	PED의 박막 및 MEMS 기술의 적용 예	375
<그림3-95>	PGS의 열전도성 비교	376
<그림3-96>	Gunze의 광학 기술 및 제품	377
<그림3-97>	터치패널과 터치패널 컨트롤러 및 드라이버 소프트웨어	378
<그림3-98>	Gorilla® Glass가 적용된 제품 ·····	380
<그림3-99>	Synaptics Gesture SuiteTM 에 적용되는 Scrolling 기능	381
<그림3-100>	> synaptics touch pad 소프트웨어 설정	382
<그림3-101>	> 터치패널 'ClearPad 3250' 이미지	383
<그림3-102>	> Fuse 기술이 적용된 휴대전화 이미지	383

<그림3-103>	클리어패드 3000와 클리어패드 적용 패널	· 384
<그림3-104>	CapSense® Controllers의 작동원리 및 이미지	• 386
<그림3-105>	TrueTouchTM의 싱글 및 멀티터치 기능	· 387
<그림3-106>	TrueTouchTM의 적용사례 ······	· 387
<그림3-107>	Cypress Charger ArmorTM \circ \square \square \square	· 388
<그림3-108>	3M의 터치스크린이 적용된 제품	· 390
<그림3-109>	3M의 터치스크린의 작동원리	· 390
<그림3-110>	3M 터치스크린이 적용된 15인치, 17인치, 22인치 디스플레이	391
<그림3-111>	게임에 적용되는 3M 터치스크린	· 392
<그림3-112>	유통에 적용되는 3M 터치스크린	· 392
<그림3-113>	금융 및 운송부문에 적용되는 3M 터치스크린	• 393
<그림3-114>	산업 및 엔터테인먼트 부문에 적용되는 3M 터치스크린	• 393
<그림3-115>	22인치 모니터 'M2256PW'의 멀티터치 기능	· 394
<그림3-116>	3M의 Smart Pen 이미지 ······	· 394
<그림3-117>	한국에 출시된 안테나형 스타일러스 3M Smart Pen	• 395
<그림3-118>	Young Fast의 매출(2010.2~2011.2) ······	· 396
<그림3-119>	Young Fast의 생산공정 ······	· 397
<그림3-120>	Young Fast의 Resistive TPS 개념도	· 397
<그림3-121>	Young Fast의 Resistive TPS 개념도	· 397
<그림3-122>	Young Fast의 Capacitive TPS 개념도	· 398
<그림3-123>	Young Fast의 TPS 솔루션이 적용된 제품	· 398
<그림3-124>	J-Touch의 터치패널 생산공정 단계	· 401
<그림3-125>	J-Touch의 터치패널 기술이 적용된 제품	· 401
<그림3-126>	AUO의 연간 매출 추이(왼쪽) 및 2010년 월간 매출 추이	· 403
<그림3-127>	AUO의 광학 이미지 터치 컨트롤 기술 개념도	· 403
<그림3-128>	AUO의 Projected capacitive 터치기술 구조도	· 404
<그림3-129>	voltage sensing(위)과 charge sensing (아래)	· 404
<그림3-130>	On-Cell 터치패널과(왼쪽) in-cell 터치패널 구조비교	· 405
<그림3-131>	AOU의 터치기술이 적용된 제품들	· 405