목차

I. 글로벌 스마트그리드 산업과 정책동향	27
1. 국내외 스마트그리드 산업동향 및 전망	$\cdot 27$
1-1. 국내 스마트그리드 산업 개요	$\cdot 27$
1-2. 국내 스마트그리드 정책동향	· 30
1) 추진 배경 및 경과	· 30
2) 스마트그리드 국가로드맵	· 32
(1) 개요 및 주요 내용	• 32
(2) 비전 및 정책 방향	· 33
3) 정책 과제	· 54
(1) 핵심기술 개발 및 표준화지원	· 54
(2) 성공모델 확산	· 56
(3) 인프라 구축	· 56
(4) 법・제도적 기반 정비	· 58
4) 투자 계획 및 기대 효과	· 60
(1) 투자 계획	· 60
(2) 기대 효과	$\cdot 67$
1-3. 국내 전기산업 동향 및 전망	· 69
1) 생산 동향 및 전망	· 69
2) 수출 동향 및 전망	· 70
3) 수입 동향 및 전망	· 72
2. 해외 스마트그리드 시장동향 및 전망	$\cdot 74$
2-1. 세계 스마트그리드 시장 동향	$\cdot 74$
1) 세계 경제 환경 개요	$\cdot 74$
2) 주요 기관별 세계 스마트그리드 시장 전망	· 75

(1) Pike Research
(2) SBI76
(3) ABI Research
(4) Seed Planning
(5) 기타 전망
3) 주요국별 스마트그리드 동향
(1) 성장성이 기대되는 국가
(2) 미국 스마트그리드 시장, 정책 동향80
(3) 캐나다 스마트그리드 시장, 정책 동향85
(4) 일본 스마트그리드 시장, 정책 동향86
(5) 중국 스마트그리드 시장, 정책 동향
(6) EU의 스마트그리드 시장, 정책동향96
(7) 호주 스마트그리드 시장, 정책 동향
(8) 인도 스마트그리드 시장, 정책 동향
(9) 브라질 스마트그리드 시장, 정책 동향
2-2. 세계 중전기기 산업 동향 및 전망106
1) 세계 중전기기(T&D) 시장동향
2) 세계 송·배전 기기 시장동향

1. 스마트그리드와 전기자동차 관련 기술 시장 동향
1-1. 개요
1) 개념 및 정의
2) 지원 필요성
1-2. 국내외 시장 동향
1) 시장 동향
2) 시장 규모 및 성장률 예측
3) 시장구조 및 경쟁현황
4) 시장 성숙도(TRL)
5) 시장 경쟁력 분석
(1) 사업화 소요기간 및 경제적 수명 예측
(2) 예상시장 점유율 및 총매출액 예측
2. GW급 HVDC시스템 기술 관련 시장동향
2-1. 국내외 시장동향
1) 시장환경

2) 국내 시장 동향	128
3) 해외 시장 동향	
2-2. 국내 관련 정책 동향	
3. 초전도 전력기기 및 적용기술 관련 시장 동향	
3-1. 국내외 시장동향	135
1) 국내 시장현황 및 전망	135
2) 해외 시장현황 및 전망	135
(1) 세계 송배전기기 시장	135
(2) 세계 초전도 전력기기 시장	
3-2. 해외 적용사례	
1) 초전도 케이블 시스템 실계통 적용	
(1) 미국	
(2) 일본	
(3) 유럽	
(4) 중국	
2) 초전도 한류기 시스템 실계통 적용사례	
(1) 독일	
(2) 미국	······ 142
(3) 중국	
(4) 일본	
(5) 영국	
(6) 이탈리아	
4. 스마트그리드 핵심 보안기술 관련 시장동향	
4-1. 개요	
1) 정의	
2) 정책 방향	
3) 스마트그리드의 보안 문제점	
4) 스마트그리드 보안기술 개발 필요성	147
4-2. 국내외 시장동향	147
1) 국내 시장동향	147
2) 해외 시장동향	
5. 주요 참여 업체 동향	153
5-1. GW급 HVDC시스템 개발 관련업체	153
1) 한국전기연구원	153
(1) 일반현황	153

(2) 스마트그리드 관련 최근동향153
2) 전력연구원
(1) 송배전 관련 주요 연구 부문
3) 효성
(1) 일반현황159
(2) 스마트그리드 관련 최근동향160
4) 한국전력
(1) 일반현황
(2) 스마트그리드 관련 최근동향
5) LS산전163
(1) 일반현황
(2) 스마트그리드 관련 최근동향
6) 현대중공업
(1) 일반현황
(2) 스마트그리드 관련 최근동향
7) 일진전기(주)
(1) 일반현황
(2) 스마트그리드 관련 최근동향
5-2. 초전도 전력기기 개발 관련업체
1) 현대중공업(주)
(1) 일반현황169
(2) 스마트그리드 관련 최근동향
2) 넥상스코리아(주)
(1) 일반현황 171
(2) 스마트그리드 관련 최근동향172
3) LS전선
(1) 일반현황····································
(2) 스마트그리드 관련 최근농향
4) 대한전선(주)····································
(1) 일반동향····································
(2) 스마트그리드 관련 최근동향
b) (주)벡트론 ····································
6) (〒)CVE
·/)에어디귀느코리아(수)····································
8) 서남에너지

9) 대성산업가스	1
10) KCC	1
11) 세원셀론텍	2
12) 나래에스앤아이	2
13) VFK	3
14) 에스제이에이치	3

1. 스마트그리드 연계 전기자동차 모니터링 기술	187
1-1. 국내외 기술 동향	187
1) 전기차 관련 기술동향	187
(1) 전기자동차 모니터링용 차량 확보기술	187
(2) 전기자동차 모니터링용 충전인프라 구축 및 운영기술	192
(3) 전기자동차 모니터링 운용 및 분석기술	199
2) 기술 분석	201
(1) 기술적 중요도	201
(2) 시급성	202
(3) 기술적 파급효과	203
(4) 기술 성숙도(TRL)	203
3) 기술수준 분석	205
(1) 특허관점에서의 기술수준	205
(2) 기술수준 평가	205
1-2. 독창성 분석	211
1) 유사특허 리스트	211
2) 세부기술별 유사특허분석	212
3) 종합의견	214
2. GW급 HVDC시스템 개발 및 적용기술	215
2-1. 개요	215
1) 구성 및 분류	215
2) 직류송전방식 개념 및 분류	216
3) 직류송전의 장점	218
4) 전류형 직류 송전시스템의 설비 및 구조	220
5) 전압형 직류 송전시스템의 설비 및 구조	221
6) 직류 송전시스템 동향	222
2-2. 국내외 기술개발 현황 및 전망	224

1) 해외 기술개발 현황 및 전망
(1) 미국
(2) 일본
(3) 독일, 스웨덴, 프랑스
(4) 캐나다, 뉴질랜드
(5) 중국225
2) 국내 기술개발 현황 및 전망
2-3. HVDC 표준화 현황
1) HVDC 기술의 표준화를 위한 국내외 현황
2) HVDC 기술의 표준화 항목
2-4. 선진국 기술개발 사례
1) ABB231
(1) HVDC Classic (전류형)231
(2) HVDC Light (전압형)231
(3) 신재생에너지 연계 프로젝트
2) SIEMENS 233
(1) HVDC Classic (전류형)233
(2) HVDC Plus (전압형)234
(3) 신재생에너지 계통 연계
3) ALSTOM
(1) 전류형 HVDC236
(2) VSC HVDC237
4) 중국의 HVDC 기술 확보
(1) 직류송전공사 규모
(2) 직류송전기술 확보 방안
(3) 기술 확보를 위한 노력
(4) 기술도입
3. 초전도 전력기기 및 적용기술
3-1. 개요
1) 구조 및 분류
2) 목적 및 필요성
(1) 전력 계통의 변화 및 전망
(2) 기존 기술의 한계
(3) 초전도 전력기기의 장점
(4) 초전도 전력기기 실증사업의 필요성

3) 핵심기술
3-2. 관련 정책 방향
3-3. 기술 분야별 주요내용
1) 초전도 전력기기 적용 계통해석 및 실계통 운영 기술 개발 249
(1) 정의
(2) 국내・외 기술동향
2) 송전급 초전도 케이블 시스템 실계통 적용기술 개발
(1) 정의
(2) 국내・외 기술동향
3) 송전급 초전도 한류기 시스템 실계통 적용기술 개발
(1) 정의
(2) 국내・외 기술동향
4. 스마트그리드 핵심 보안기술 동향
4-1. 스마트그리드 보안 기술 분야별 동향
1) 스마트그리드 보안 기반기술 연구 개발
(1) 정의
(2) 국내・외 기술동향
2) 스마트그리드 보안 관제기술 연구 개발
(1) 정의
(2) 국내・외 기술동향
3) 스마트그리드 기기 보안기술 연구 개발
(1) 정의
(2) 국내・외 기술동향
4-2. 선진국 기술개발 사례
1) NIST
2) FERC
3) 스마트그리드 보안 혁신기술 개발 과제
Ⅳ. 스마트그리드 핵심기술 분야 연구개발 테마
1 ㅅ미ㅌㄱ긔ㄷ 혀게 거기기도키 ㅁ니더리 기스 개바 거랴

1) 총괄과제 : 스마트그리드 연계 전기자동차 모니터링 기술296
2) 연구기간 및 연구비
1-3. 연구개발 결과의 활용방안 및 기대효과
1) 연구개발 결과의 활용방안
2) 기대효과
(1) 기술적 기대효과
(2) 경제적 기대효과
(3) 기타 기대효과
1-4. 장애요인 및 사업화 성공 가능성
1) 장애요인
2) 기술개발 및 사업화 성공가능성302
2. GW급 HVDC시스템 개발 및 적용기술 개발
2-1. 기술개발 추진계획
1) 기술개발 비전 및 목표
(1) 기술개발 비전 및 주요 추진전략
(2) 개발목표
(3) 기술개발의 범위
(4) 과제성과 측정지표308
(5) 기술수준 및 R&D 목표 분석
2-2. 기술개발 내용
2-3. 추진 전략
1) 기술개발 추진 방향310
2) 핵심기술 획득 전략 및 방안310
3) 연구개발 성공 전략311
2-4. 기대효과 및 활용방안
1) 기대효과
(1) 산업 및 경제적 파급효과
(2) 과제유형에 따른 목표달성 효과
(3) 수입대체 및 고용창출 효과
2) 활용방안
3. 초전도 전력기기 및 적용기술 개발
3-1. 기술개발 추진계획
1) 기술개발 목표
(1) 비전
2) 기술과제별 개발목표

(1) 초전도 전력기기 적용 계통해석 및 실계통 운영 기술 개발 320
(2) 고효율, 대용량, 친환경 전력 전송을 구현하는 송전급 DC /AC의
초전도 케이블 시스템 제작, 평가 및 실계통 설치기술 개발 321
(3) 154 kV급 초전도 한류기 시스템 및 실계통 적용기술 개발 321
3) 과제성과 측정지표
(1) 세부 1과제
(2) 세부 2과제
(3) 세부 3과제
4) 기술수준 및 R&D 목표 분석
(1) 세부 1과제
(2) 세부 2과제
(3) 세부 3과제
3-2. 기술개발 내용
3-3. 추진 전략
1) 기술개발 추진 방향
(1) 세부 1과제
(2) 세부 2과제
(3) 세부 3과제
2) 핵심기술 획득 전략 및 방안
(1) 핵심기술 획득 전략
(2) 기술획득 방안
(3) 연구개발 성공 전략
(4) 산・학・연・관 협력 방안
3-4. 기술 분야별 개발목표
1) 초전도 전력기기 적용 계통해석 및 실계통 운영 기술
(1) 기술개발 내용
(2) 과제성과 측정지표
(3) 기술수준 및 R&D 목표 분석
2) 송전급 초전도 케이블 시스템 실계통 적용기술 개발 338
(1) 기술개발 내용
(2) 과제성과 측정지표
(3) 기술수준 및 R&D 목표 분석
3) 송전급 초전도 한류기 시스템 실계통 적용기술 개발
(1) 기술개발 목표 및 내용
(2) 기술개발 목표

3-5. 연구개발 기대효과 및 활용방안	
1) 기대효과	
(1) 산업 및 경제적 파급효과	
(2) 시장 규모 및 점유율 전망	
(3) 과제유형에 따른 목표달성 효과	
(4) 고용창출 효과	
2) 활용방안	
4. 스마트그리드 핵심 보안기술 개발 전략	
4-1. 핵심 보안기술 구조 및 분류	
1) 스마트그리드 보안 기반기술 연구개발	
2) 스마트그리드 보안 관제기술 연구개발	
3) 스마트그리드 기기 보안기술 연구개발	
4-2. 기술개발 추진계획	
1) 기술개발 목표	
(1) 비전	
(2) 개발목표	
(3) 과제성과 측정지표	
(4) 기술수준 및 R&D 목표 분석	
2) 기술개발 내용	
3) 기술개발 추진 방향	
(1) 스마트그리드 보안 기반기술 연구 개발	
(2) 스마트그리드 보안 관제기술 연구 개발	
4) 핵심기술 획득 전략 및 방안	
5) 연구개발 성공 전략	
4-3. 스마트그리드 보안 분야 핵심기술별 개발전략	
1) 스마트그리드 보안 기반기술 연구 개발	
(1) 기술개발 목표 및 내용	
2) 스마트그리드 보안 관제기술 연구 개발	
(1) 기술개발 목표 및 내용	
3) 스마트그리드 기기 보안기술 연구 개발	
(1) 기술개발 목표 및 내용	
4-4. 연구개발 기대효과 및 활용방안	
1) 기대효과	
(1) 산업 및 경제적 파급효과	
(2) 과제유형에 따른 목표달성 효과	

(3) 고용창출 효과
2) 활용방안
(1) 스마트그리드 보안 기반기술 연구개발
(2) 스마트그리드 보안 관제기술 연구개발
(3) 스마트그리드 기기 보안기술 연구개발
V. 부록[참고자료] ····································
1. 국내 전력산업 관련 통계
2. 스마트그리드 사업 활성화 계획431
2-1. 검토배경
1) 그간의 정책추진 성과 434
2) 평가
2-2. 주요내용
1) 제주 실증사업 활성화 436
2) 신규 비즈니스 창출을 위한 제도개선 437
3) 스마트그리드 보급·확대 기반구축 439
2-3. 추진일정

표목차

Ⅰ. 글로벌 스마트그리드 산업과 정책동향
<표1-1> 2009~2013년 그린IT 기대효과
<표1-2> 스마트그리드 투자 규모
<표1-3> 단계별 세부 투자계획
<표1-4> 기술개발 분야 세부 투자계획62
<표1-5> 지능형 전력망 세부 투자계획63
<표1-6> 지능형 소비자 세부 투자계획64
<표1-7> 지능형 운송 세부 투자계획64
<표1-8> 지능형 신재생 세부 투자계획65
<표1-9> 지능형 전력서비스 세부 투자계획65
<표1-10> 표준 및 인증 세부 투자계획66
<표1-11> 보안 세부 투자계획66
<표1-12> 주요 성과별 기대효과
<표1-13> 세부 기대효과
<표1-14> 스마트그리드 도입 국가별 시장성 평가와 진출 유망국 79
<표1-15> 미국 스마트그리드 영역별 주요 플레이어82
<표1-16> 미국 전력 수용가 계약 현황83
<표1-17> 미국, 유럽, 일본 전력계통 특징89
<표1-18> 11차 5개년 계획 중국 전력망 발전 주요 목표
<표1-19> 중국 전력 수용가 계약 현황94
<표1-20> 중국 스마트미터 설치 추이 예측95
<표1-21> 영국의 스마트 미터기(지능형 전력망) 사업 모델
<표1-22> 인도 전력부 산하 주요 기관 현황
<표1-23> Copel 스마트그리드 추진 계획

	시장 전망…	전 기기	송·배전	세계	<표1-24>
전망107	지역별 시장	전 기기	송·배전	세계	<표1-25>
전망	품목별 시장	전 기기	송·배전	세계	<표1-26>

<표2-6> 국내·외 시장규모 및 수출·입 현황130 <표2-24> (주)CVE 일반 현황 ······179

<표2-31>	(주)VFK 일반 현]황		83
<표2-32>	에스제이에이치(즉	주) 일반	현황1	83

Ⅲ. 스마트그리드 핵심 기술분야 기술동향
<표3-1> 충전인프라에 따른 전원 규격
<표3-2> 일본 가나가와縣의 충전인프라 구축 목표
<표3-3> 기술성 분석에 따른 평가
<표3-4> 기술수준 및 격차
<표3-5> HVDC 기술 분류 및 국내의 기술 수준
<표3-6> 직류송전에 관한 국내 연구기관의 연구현황
<표3-7> 각 과제의 최종 목표
<표3-8> 초전도 전력기기별 개발 필요성 분석
<표3-9> 국내 연구개발 내용 및 실적
<표3-10> 초전도케이블 국내 연구개발 내용 및 실적
<표3-11> 초전도한류기 적용 가능대상 예시
<표3-12> NERC가 마련한 8가지 CIP 신뢰성 기준
<표3-13> 미국 에너지부 지원 스마트그리드 보안 혁신기술 개발 과제 288

(표4-1> 연도별 연구비	96
(표4-2> 기술격차 축소 목표	98
(표4-3> 선진기술 대비 국내 기술수준 비교	08
(표4-4> 이산화탄소 감축효과	14
(표4-5> 에너지 절감효과	15
(표4-6> 시장 규모 및 점유율 전망	15
<표4-7> 선진기술 대비 국내 기술수준 비교3₄	43
(표4-8> 이산화탄소 감축효과	43
(표4-9> 에너지 절감효과	43
<표4-10> 선진기술 대비 국내 기술수준 비교3€	62
<표4-11> 선진기술 대비 국내 기술수준 비교3€	64
<표4-12> 선진기술 대비 국내 기술수준 비교3€	65

Ⅴ. 부록[참고자료]	373
<표5-1> 전력수급 실적	····· 373
<표5-2> 발전 설비용량(종합)	····· 373

<표5-3> 발전 설비용량 (발전자회사 및 도서)	374
<표5-4> 발전 설비용량(타사)	····· 374
<표5-5> 2010 월별 발전 설비용량(종합)	375
<표5-6> 2010 월별 발전 설비용량(발전자회사 및 도서)	375
<표5-7> 2010 월별 발전 설비용량(타사)	376
<표5-8> 발전 설비용량 구성비(종합)	376
<표5-9> 발전 설비용량 구성비 (발전자회사 및 도서)	377
<표5-10> 발전 설비용량 구성비(타사)	377
<표5-11> 2010 월별 발전 설비용량 구성비(종합)	378
<표5-12> 2010 월별 발전 설비용량 구성비(발전자회사 및 도서)	378
<표5-13> 2010 월별 발전 설비용량 구성비(타사)	379
<표5-14> 발전회사별 발전 설비용량(남동)	379
<표5-15> 발전회사별 발전 설비용량(중부)	380
<표5-16> 발전회사별 발전 설비용량(서부)	380
<표5-17> 발전회사별 발전 설비용량(남부)	381
<표5-18> 발전회사별 발전 설비용량(동서)	381
<표5-19> 발전회사별 발전 설비용량	····· 382
<표5-20> 발전원(소)별 설비용량(종합)	383
<표5-21> 발전원(소)별 설비용량(한전 및 발전자회사)	384
<표5-22> 발전원(소)별 설비용량(도서내연 및 타사)	385
<표5-23> 발전소 건설현황	386
<표5-24> 행정구역별 발전설비(한전, 발전자회사)-1	386
<표5-25> 행정구역별 발전설비(한전, 발전자회사)-2	387
<표5-26> 행정구역별 발전설비(타회사)-1	387
<표5-27> 행정구역별 발전설비(타회사)-2	388
<표5-28> 에너지원별 설비용량	388
<표5-29> 에너지원별 설비용량(2010 월별)	389
<표5-30> 에너지원별 발전전력량	389
<표5-31> 에너지원별 발전전력량(2010 월별)	390
<표5-32> 발전 전력량(종합)	390
<표5-33> 발전 전력량(발전자회사 및 도서)	391
<표5-34> 발전 전력량(타사)	391
<표5-35> 2010 월별 발전 전력량(종합)	····· 392
<표5-36> 2010 월별 발전 전력량(발전자회사 및 도서)	····· 392
<표5-37> 2010 월별 발전 전력량(타사)	393

<표5-38>	전년동기대비 발전량 증감률(종합)
<표5-39>	전년동기대비 발전량 증감률(발전자회사 및 도서)
<표5-40>	전년동기대비 발전량 증감률(타사)
<표5-41>	2010 월별 전월대비 발전량 증감률(종합)
<표5-42>	2010 월별 전년동기대비 발전량 증감률(발전자회사 및 도서) 395
<표5-43>	2010 월별 전년동기대비 발전량 증감률(타사)
<표5-44>	발전자회사별 발전 전력량(남동)
<표5-45>	발전자회사별 발전 전력량(중부)
<班5-46>	발전자회사별 발전 전력량(서부)
<표5-47>	발전자회사별 발전 전력량(남부)
<班5-48>	발전자회사별 발전 전력량(동서) 400
<班5-49>	발전자회사별 발전 전력량 401
<표5-50>	연료사용량-1
<표5-51>	연료사용량-2
<표5-52>	20010 월별 연료사용량-1 402
<표5-53>	2010 월별 연료사용량-2 403
<표5-54>	화력발전소 연료사용량-1
<표5-55>	화력발전소 연료사용량-2
<표5-56>	2010 월별 화력발전소 연료사용량-1 404
<표5-57>	2010 월별 화력발전소 연료사용량-2 405
<표5-58>	발송전 실적-1
<표5-59>	발송전 실적-2
<표5-60>	2009 월별 발송전 실적-1
<표5-61>	2009 월별 발송전 실적-2
<표5-62>	본부별 전력소 주변압기 사용률 현황-1 408
<표5-63>	본부별 전력소 주변압기 사용률 현황-2 409
<표5-64>	전력 구입량(잠정)
<표5-65>	전력 구입금액(잠정)
<표5-66>	전력 구입단가(잠정)
<표5-67>	회사별 전력 거래실적 -1
<표5-68>	회사별 전력 거래실적 -2 412
<표5-69>	회사별 전력 거래실적 -3
<표5-70>	발전원별 거래실적 -1 414
<표5-71>	발전원별 거래실적 -2
<표5-72>	발전원별 거래실적 -3

<표5-73> 부하별 거래실적
<표5-74> 시장가격 및 정산단가 418
<표5-75> PPA 구입실적 ······ 419
<표5-76> 고객 및 판매실적-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<표5-77> 고객 및 판매실적-2 420
<표5-78> 2010 월별 고객 및 판매실적-1 421
<표5-79> 2010 월별 고객 및 판매실적-2 421
<표5-80> 계약종별 판매전력량-1 422
<표5-81> 계약종별 판매전력량-2 422
<표5-82> 2010 월별 계약종별 판매전력량-1 423
<표5-83> 2010 월별 계약종별 판매전력량-2 423
<표5-84> 계약종별 판매수입-1 424
<표5-85> 계약종별 판매수입-2 424
<표5-86> 2010 월별 계약종별 판매수입-1 425
<표5-87> 2010 월별 계약종별 판매수입-2 425
<표5-88> 용도별 판매전력량-1 426
<표5-89> 용도별 판매전력량-2 426
<표5-90> 2010 월별 용도별 판매전력량-1 427
<표5-91> 2010 월별 용도별 판매전력량-2 427
<표5-92> 산업분류별 판매전략량 428
<표5-93> 송전설비 추이
<표5-94> 변전설비 추이

그림목차

I. 글로벌 스마트그리드 산업과 정책동향
<그림1-1> 국내 온실가스 배출 추이
<그림1-2> 국내 스마트그리드 비전 및 목표
<그림1-3> 지능형전력망(Smart Power Grid)
<그림1-4> 지능형전력망(Smart Power Grid) 단계별 목표
<그림1-5> 지능형전력망(Smart Power Grid) 로드맵
<그림1-6> 지능형전력망(Smart Power Grid)의 주요 지표별 목표 수준 38
<그림1-7> 지능형 소비자(Smart Consumer)
<그림1-8> 지능형 소비자(Smart Consumer) 단계별 목표 40
<그림1-9> 지능형 소비자(Smart Consumer) 로드맵41
<그림1-10> 지능형 소비자 (Smart Consumer)의 주요 지표별 목표 수준 42
<그림1-11> 지능형 운송 (Smart Transportation)42
<그림1-12> 지능형 운송 (Smart Transportation) 단계별 목표 ·································44
<그림1-13> 지능형 운송 (Smart Transportation) 로드맵 45
<그림1-14> 지능형 운송 (Smart Transportation)의 주요 지표별 목표 수준 …46
<그림1-15> 지능형 신재생 (Smart Renewable)
<그림1-16> 지능형 신재생 (Smart Renewable) 단계별 목표 48
<그림1-17> 지능형 신재생 (Smart Renewable) 로드맵 49
<그림1-18> 지능형 신재생 (Smart Renewable)의 주요 지표별 목표 수준 50
<그림1-19> 지능형 전력서비스 (Smart Electricity Service)
<그림1-20> 지능형 전력서비스 (Smart Electricity Service) 단계별 목표 52
<그림1-21> 지능형 신재생 (Smart Renewable) 로드맵
<그림1-22> 지능형 전력서비스의 주요 지표별 목표 수준
<그림1-23> 주요 성과별 기대효과

<그림1-24> -	국내 전기산업 생산 동향 및 전망	0
<그림1-25> -	국내 전기산업 수출 동향 및 전망	1
<그림1-26> -	국내 전기산업 품목별 수출 동향	1
<그림1-27> -	국내 전기산업 지역별 수출 동향	2
<그림1-28> -	국내 전기산업 수입 동향	3
<그림1-29> 3	전 세계 스마트 미터 설치 수 전망	7
<그림1-30> 1	미국 GRID 2030 Vision : 전력 백본(Backbone)망 컨셉 8	2
<그림1-31> 1	미국 전력시장 지역 분포	5
<그림1-32> 1	미국, 유럽, 일본 전력 수요분포 및 연계도8	9
<그림1-33> -	중국의 스마트그리드 구성도	3
<그림1-34> (영국 기존 재래식 전력망	8

<그림2-1> 전기자동차 구성112
<그림2-2> EV(左), PHEV(中), HEV(右) 구성 비교 ···································
<그림2-3> 해외(미국) 전기자동차 모니터링 구성 예
<그림2-4> 2020년 이내 건설예정 ±800kV HVDC Project Total Capacity…130
<그림2-5> 2020년내 중국 내 800kV급 HVDC 건설 Project
<그림2-6> 2020년 내 브라질에 건설 예정 HVDC Project
<그림2-7> 콜럼버스 및 알바니에서 실계통 운영 중인 초전도케이블 137
<그림2-8> LIPA 초전도 케이블 시스템 전경
<그림2-9> LIPA 초전도 케이블의 구조
<그림2-10> 미국 전력계통 구성
<그림2-11> Tres Amigas Super Station 개념
<그림2-12> CULT110 한류기의 설치 구도
<그림2-13> Vattenfall의 한류기142
<그림2-14> 220 kV급 한류기 3D 설계
<그림2-15> 지역별 스마트그리드 사이버 보안 시장 규모 (2010년~2015년)…150
<그림2-16> 스마트그리드 5대 응용 별 사이버 보안 시장 규모 151

Ⅲ. 스마트그리드 핵심 기술분야 기술동향	187
<그림3-1> CT&T社 「e-Zone」제원	
<그림3-2> AD모터스社 신형「오로라」제원	
<그림3-3> 현대자동차社 「i10 EV」제원	
<그림3-4> Th!nk Global社 「Th!nk」제원	

<그림3-5> 🛚	Witsubishi社 「i MiEV」제원
<그림3-6>N	issan社 「leaf EV」제원190
<그림3-7>D	aimler社 「Smart ED」제원
<그림3-8> I	3MW社 「Mini E」제원191
<그림3-9> >	전기자동차 충전인프라 구성도
<그림3-10>	전기자동차 충전방식의 추이
<그림3-11>	미국 California州 충전인프라 구축 현황
<그림3-12>	유럽의 충전인프라 구축 현황
<그림3-13>	독일의 'e-mobility Berlin' 실증사업
<그림3-14>	배터리 교환소 구축 개념도
<그림3-15>	직류송전기술 개념도
<그림3-16>	Bipolar Link ······ 217
<그림3-17>	Back-to-back Link
<그림3-18>	가공 선로의 경우 투자비용 비교
<그림3-19>	직류 및 교류 방식 손실 비교
<그림3-20>	비동기 연계
<그림3-21>	전류형 변환소 기기 배치도
<그림3-22>	전압형 변환소 기기 배치도
<그림3-23>	직류송전기술 적용도
<그림3-24>	DESERTEC 프로젝트223
<그림3-25>	전류형 HVDC를 이용한 해상풍력 시스템
<그림3-26>	송전급 초전도 전력기기 실계통 적용기술 개발을 위한
	과제구성 개요도
<그림3-27>	2014년 제주도 154kV급 전력계통도, 과도해석 프로그램으로
	전 계통 구현가능
<그림3-28>	HTS DC cable 고조파 전류에 따른 Loss값 해석결과251
<그림3-29>	한국전기연구원과 창원대학교에서 실시한 초전도 한류기에
	의한 계전기 동작
<그림3-30>	창원대학교에서 실시하고 있는 초전도 케이블의 PHILS
	운전시스템252
<그림3-31>	제품화용 22.9 kV/50 MVA급 초전도 전력케이블256
<그림3-32>	송전급 초전도 케이블 성능시험257
<그림3-33>	이천 변전소에 설치된 초전도 전력 케이블257
<그림3-34>	콜럼버스 및 알바니에서 실계통에 연계 운영중인 초전도케이블 260
<그림3-35>	LIPA 초전도 케이블 시스템

<그림3-36>	전압-길이별 기술개발 동향
<그림3-37>	전압-연도별 기술개발 동향
<그림3-38>	초전도 한류기의 동작 원리 및 동작 특성
<그림3-39>	22.9 kV/630 A급 하이브리드 초전도 한류기 시작품
<그림3-40>	하이브리드 초전도 한류기의 3상 단락시험 결과
<그림3-41>	이천변전소에 설치된 22.9 kV/630 A급 초전도 한류기 267
<그림3-42>	CURL10의 초전도 한류기(왼쪽)와 변전소 설치(오른쪽) 268
<그림3-43>	CULT110 한류기의 설치 구도
<그림3-44>	Vattenfall의 한류기 ······269
<그림3-45>	중국 운남성의 Puji 변전소에설치된 35 kV급 한류기 270
<그림3-46>	220 kV급 ksfbrl 3D 설계
<그림3-47>	초전도 한류기 개념설계도, 한류모듈 및 설치 예정지 271
<그림3-48>	Shandin 변전소에서 운전 중인 한류기
<그림3-49>	66 kV 초전도 한류기 모듈
<그림3-50>	실증 중인 6.6 kV 초전도 한류기
<그림3-51>	NIST의 스마트그리드 보안 표준 수립 체계

Ⅳ. 스마.	트그리드	핵심기를	술 분야 연	구개발	테마 ·	••••••••••••••••••••••••	291
<그림4-12	> 산 · 학	• 연 • 관	협력 체계	•••••			335
<그림4-22	> 스마트:	그리드 핵	심 보안기술	는 개발 :	과제 구성		347

··· 3′	73	3
	··· 3	373