목차

의 기술 개황 및 EMC 기준과 대응 동향19	I. 무
술 동향	1. 무선
우의 이해	1-1.
- 기술의 필요성	1-2.
- 기술의 한계	1-3.
·의 응용기술 동향 ·······25	1-4.
중 기술의 원리	1)
· 기술의 구성 ···································	2)
분야 응용 기술 ~~~~~ 29	3)
ositioning 기술 ······29	
토콜	
방식32	
l어 방식 ······34	
35	
우의 방식 및 참여업체 현황	1-5.
)식(MI) ····································	1)
상식(MR) ····································	2)
식	3)
우의 응용분야 및 발전 방향	1-6.
	1)
발 동향	2)
상 44	
중	

(3) 지상對우주	46
(4) 우주對지상	46
(5) 우주對우주	47
3) 향후 발전 방향	47
2. 무선전력전송 EMC 대응 동향과 주파수 분배	49
2-1. 국내외 EMC 기준과 대응 동향	49
1) 인체 영향 및 EMC 사용 규정	49
2) 국내외 EMC 적합기준 동향	51
(1) 해외 EMC 적합기준5	51
(2) 국내 EMC 적합기준	52
2-2. 무선전력전송 주파수 분배	56
1) 주요 내용	57
2) 세부적인 진행사항	57
3) ISM(industrial, Scientific Medical)	58
(1) ISM 7[7]5	58
(2) ISM 대역5	59

Ⅱ. 무선전력전송 표준화 개발과 특허 동향 ……………………………………63

1. 무선전력전송 표준 개발 동향
1-1. 최근 이슈
1) A4WP와 PMA의 표준화 통합66
2) A4WP, 아시아 표준개발 선두 기관들과 무선전력기술표준화 협력67
3) TTA, 국제 무선충전 얼라이언스와 양해각서 체결69
1-2. 주요 기구별 무선전력전송 표준개발 동향
1) 포럼/컨소시엄 중심의 표준개발 동향
(1) WPC(Wireless Power Consortium)71
(2) A4WP(Alliance for Wireless Power)77
(3) 파워맷 얼라이언스(PMA)83
(4) 한국정보통신기술협회(TTA)84
2) 국제표준화기구별 표준개발 동향
(1) 아시아-태평양 전기통신협의체 무선그룹(AWG)88
(2) 국제전기기술위원회/기술위원회 100(IEC/TC100)
(3) 국제표준화기구/국제전기기술위원회 합동기술위원회1/소위원회6 … 95
(4) 국제전기통신연합-라디오통신 섹터(ITU-R)

	1-3. 표준개발 기구의 표준화 동향	- 98
	1) 중국 통신 표준 협회(CCSA)	- 98
	2) 유럽 전기통신 표준협회(ETSI)	99
	1-4. 주요 분야별 국제 표준화 대응 현황	101
2.	국내외 무선전력전송 분야 특허 동향	112
	2-1. 세계 자기장통신 • 무선전력전송 특허 현황	112
	1) 출원년도별 특허출원 동향	112
	2) 분야별 특허출원 동향]	113
	3) 분야별 특허출원국 현황	114
	4) 국내 출원인 현황	115
	5) 분야별 국내 주요 출원인 현황	116
	6) 국내 주요 출원인 분야별 특허출원 현황	117
	7) 국외 출원인 현황	119
	8) 분야별 국외 주요 출원인 현황	120
	9) 국외 주요 출원인 분야별 특허출원 현황]	121
	2-2. 국내 무선전력전송 기술 관련 특허 동향	124
	1) 연도별 무선전력전송 관련 출원 동향	124
	2) 연도별 무선충전 방식별 출원 동향	124
	3) 자기공명방식 출원인 별 특허출원 동향	125
	4) 주요 업체별 특허 동향]	126

1) 세계 시장규모 및 전망
2) 국내 시장규모 및 현황
3) 시장 확대를 위한 대응 전략
(1) 표준화 선점
(2) 성능 개선
(3) 원가 절감
1-3. 모바일 이차전지 시장전망
1) 최근 기술 동향
2) 시장 규모와 전망
(1) 주요 제조사별 출하량과 M/S(2013년)
(2) 중,소형 주요 Application별 출하 비중
(3) 중, 소형 타입별 출하량 및 전망
(4) 주요 업체별 구매현황
(5) 2014년 전망
2. 모바일기기용 무선충전기 제품 트랜드
2-1. 모바일기기와 무선충전
2-2. 2014 'CES'에서 선보인 무선충전 기술
1) 인텔 - 보울(bowl) 형태의 무선 충전기
2) 듀라셀 - 무선 충전기
3) 아우디 - 폰박스
4) 파워바이프록시 - 박스 형태의 무선 충전기
5) 스틸시리즈 - 게이밍 마우스
6) 미디어텍 - SOC179
7) 삼성전기 - 무선 충전기
8) WiTricity -무선충전 패드
2-3. 최근 유통되고 있는 주요 제품 사양

7	해외 주요 업제 개말동양과 비스니스 선탁	193
	1) 구글(Google)	193
	2) 노르딕 세미컨덕터(Nordic)	196
	3) 덴소(Denso)	198
	4) 도시바(Toshiba)	200
	5) 로옴(Rohm)	202

6) 무라타제작소(Murata) ·······20)5
7) 미디어텍(MediaTek)	13
8) 세이코엡손(Seico Epson)	4
9) 애플(Apple)	15
10) 오시아(Ossia)22	24
11) 오카무라(Okamura)22	26
12) 와이트리시티(WiTricity)22	28
13) 와일드차저(Wild Charger)23	30
14) 인텔(Intel)	
15) 퀄컴(Qualcomm)	34
16) 텍사스인스트루먼트(Texas Instruments) ····································	39
17) 파워매트(Powermat) 24	10
18) 풀톤 이노베이션(Fulton Innovation)	14
19) 후지쯔(Fujitsu)24	16
20) 휴마복스(Humavox) ·······25	50
21) IDT(Integrated Device Technology)25	51
22) NXP반도체 ······25	56
2. 국내 주요 업체 개발동향과 비즈니스 전략	59
1) 삼성전자	
2) LG전자	33
3) 삼성전기	39
4) LS전선	73
5) 와이즈파워	77
6) 한림포스텍	33
7) 알에프텍	38
8) 에스피에스	<i>)</i> 0
9) 한솔테크닉스)3
10) 켐트로닉스	<i>)</i> 5
11) 크로바하이텍) 7
12) 뉴인텍) 9
13) 열림기술)1
14) 맵스)4
15) 한국과학기술원(KAIST) ····································)5
16) 전자부품연구원(Katech))7

V. EV 무선전력전송 개발동향 및 시장전망	
1. 최근 EV 무선전력전송 기술개발 동향	
1-1. 개황	
1-2. 최근 주요 개발 동향	
2. EV 분야 무선전력전송 시장동향과 전망	
2-1. 최근 전기자동차 시장동향과 전망	
1) 시장 개황	
(1) EV 시장의 성장	
(2) EV 시장 성장의 경제적 효과	
(3) EV 보급 확산과 지구 온난화 억제	
2) 전기차 시장 동향과 전망	
(1) 글로벌 시장	
(2) 국내 시장	
3) 전기자동차 산업 관련 정책 동향	
(1) 총괄	
(2) 미국	
(3) 유럽	
(4) 중국	
(5) 일본	
(6) 국내	
4) 전기자동차 시장 활성화 방안	
(1) 기술 개선	
(2) 금융 지원	
(3) 인프라 지원	
2-2. 최근 EV 충전인프라 시장동향과 전망	
1) 충전 시스템의 분류 및 동향	
(1) 접촉식 충전시스템	
(2) 유도식 충전시스템	
(3) 배터리 교환방식	
(4) V2G와 xEVs	
2) 국가별 충전인프라 구축사례	
(1) 미국	
(2) 일본	
(3) 독일	

	(4) 국내	354
3)	충전인프라 시장 전망 및 이슈	355
	(1) 시장 규모	355
	(2) 주요 업체 동향	357
	(3) 국내 충전인프라 산업	359
2-3.	EV 무선전력전송 시장 전망	362
3. EV	무선전력전송 표준화	366
3-1.	표준화를 위한 필수 요건	366
3-2.	EV 무선전력전송 국제표준화	367
1)	SAE(Society of Automotive Engineers)	367
2)	ITU(International Telecommunication Union)	367
4. EV	무선전력전송 주요 업체 개발동향과 비즈니스 전략	369
	해외 (완성차 업체)	
	도요타(Toyota) ·····	
2)	닛산(Nissan)	
3)		
	미쓰비시(Mitsubishi)	
	히노(Hino)	
	크라이슬러(Chrysler) ······	
	영국 - 전기버스 프로젝트	
	해외(부품 및 솔루션)	
	퀄컴(Qualcom)	
2)	델파이(Delphi)	388
3)	도시바(Toshiba) ······	389
4)		
5)	에바트랜(Evatran) ······	
	아이에이치아이(IHI) ······	
	헤보 파워(Hevo Power) ······	
	모멘텀 다이나믹스(Momentum Dynamics) ······	
	국내	
	카이스트(KAIST) ······	
,	뉴인텍	
3)	그린파워	421

표목차

I. 무선전력전송의 기술 개황 및 EMC 기준과 대응 동향19
<표I-1> 무선충전의 향후 단계별 발전 방향48
<표 I -2> 무선전력전송 응용제품별 시장 비율
<표 I -3> 무선전력전송 국제 표준단체 및 표준규격 비교
<표 I -4> ISM기기의 분류
<표 I -5> 전파응용설비 이용 사례
<표 I -6> ITU 전파규칙(RR)에 의한 ISM대역 현황
Ⅱ. 무선전력전송 표준화 개발과 특허 동향63
<표Ⅱ-1> WPC와 A4WP 표준 비교
<표Ⅱ-2> 표준화항목별 국내 TOP5 출원인 현황
<표Ⅱ-3> 표준화항목별 국외 TOP5 출원인 현황
<표Ⅱ-4> IPC(국제 특허 분류)별 특허 등록 현황
<표Ⅱ-5> 주요 출원인별 특허 등록 현황
Ⅲ. 모바일용 무선전력전송 시장전망 및 제품 트랜드135
<표Ⅲ-1> 주요 부품별 변화 내용과 주요업체
<표Ⅲ-2> 삼성전자 스마트폰 물량 추이 및 전망
<표Ⅲ-3> 애플 스마트폰 물량 추이 및 전망
<표Ⅲ-4> LG전자 스마트폰 물량 추이 및 전망

<표Ⅲ-7> 북미 스마트폰 시장 규모 추이 및 전망 ······ 146
<표Ⅲ-8> 아시아/태평양 스마트폰 시장 규모 추이 및 전망 ······ 147
<표Ⅲ-9> 동유럽 스마트폰 시장 규모 추이 및 전망 ······ 147
<표Ⅲ-10> 남미 스마트폰 시장 규모 추이 및 전망 ······ 147
<표Ⅲ-11> 중동/아프리카 스마트폰 시장 규모 추이 및 전망 ····· 148
<표Ⅲ-12> 안드로이드 기반의 키즈용 태블릿 사례 ····· 150
<표Ⅲ-13> 2013년 전세계 업체 별 최종 소비자 태블릿 판매 ···· 152
<표Ⅲ-14> 2013년 전세계 운영체제 별 최종 소비자 태블릿 판매 ···· 153
<표Ⅲ-15> 전세계 태블릿 시장 기업용/소비자용 비중 추이 전망 ···· 155
<표Ⅲ-16> 2016년 모바일 기기용 무선충전기 시장전망 ···· 166
<표Ⅲ-17> 국내 무선전력전송 시장전망 ···· 161
<표Ⅲ-18> 2013년 중,소형 2차전지 출하량/시장 점유율 ···· 170
<표Ⅲ-19> 국가별 순위 ···· 170

Ⅳ. 모바일기기 분야 주요 업체 개발동향과 비즈니스 전략 ………… 193

<표Ⅳ-20> (주)에스피	피에스의 일반현황	
<표Ⅳ-21> (주)에스ㅍ	피에스의 재무현황	
<표Ⅳ-22> 한솔테크닉	닉스(주)의 일반현황	
<표Ⅳ-23> 한솔테크닉	닉스(주)의 재무현황	
<표Ⅳ-24> (주)켐트로	로닉스의 일반현황	
<표Ⅳ-25> ㈜켐트로닉	닉스의 매출 현황	
<표Ⅳ-26> 크로바하여	이텍(주)의 일반현황	
<표Ⅳ-27> 크로바하여	이텍의 재무현황	
<표Ⅳ-28> (주)뉴인티	텍의 일반현황	
<표Ⅳ-29> (주)뉴인텍	텍의 재무현황	
<표Ⅳ-30> (주)열림기	기술의 일반현황	
<표Ⅳ-31> 파워홀릭	mini 원형 무선충전기 제품사양	

<표V-1> 국내 전기차 보급 현황
<표V-2> 국내외 주요 전기차 비교
<표V-3> 국가별 전기자동차 구입 혜택
<표V-4> 주요 국가의 xEV 관련 정책 현황
<표V-5> 그린카 보급 목표(단위 : 천대, 누적) ···································
<표V-6> 충전인프라 보급 목표(단위 : 천기, 누적) ···································
<표V-7> 일본 EV & PHV 타운과 보조금 지급현황
<표V-8> 국내 전기차 및 충전기 보급 현황
<표V-9> 글로벌 전기차 업계 충전표준 현황
<표V-10> 전기차 셰어링'시티카'월별 이용현황
<표V-11> 전기차 분야 무선전력전송 현황
<표V-12> 히노자동차의 비접촉급전 하이브리드 사양
<표V-13> 급전 시스템

그림목차

I. 무선전력전송의 기술 개황 및 EMC 기준과 대응 동향19
<그림 I -1> 무선전력전송 개념도
<그림 I -2> 이스라엘 기업 파워매트 무선충전기
<그림 I -3> 전기자동차 무선충전 시스템
<그림 I -4> 휴대기기 충전기술의 진화
<그림 I -5> 무선충전 시스템 파급 분야
<그림 I -6> 무선전력전송의 원리
<그림 I -7> 무선전력전송의 원리-1
<그림 I -8> 자기공명형 무선전력전송 시스템
<그림 I -9> 복수기기에 대한 무선 전력 전송 개념도
<그림 I -10> 무선 충전 베이스 스테이션의 구성을 자세히 나타낸 블록도 … 29
<그림 I -11> Free Positioning(Coil Array) 방식
<그림 I -12> Free positioning(Moving Coil) 방식
<그림 I -13> Guided Positioning 방식
<그림 I -14> WPC 통신 패킷
<그림 I -15> WPC 시스템 제어 흐름도
<그림 I -16> 전자기 유도방식의 원리
<그림 I -17> WPC 송신부 예시
<그림 I -18> WPC 수신부 예시
<그림 I -19> WPc 시스템 개요
<그림 I -20> WPC 전력전송 시스템 제어방식
<그림 I -21> WPC 실드 구조
<그림 I -22> 자기 유도 방식의 원리 및 특징

<그림 I -23>	KAIST는 온라인 전기자동차 원리	37
<그림 I -24>	자기 공명 방식의 원리 및 특징	38
<그림 I -25>	전자기파 방식의 원리 및 특징	39
<그림 I -26>	SHARP라는 이름으로 알려진 무선전력전송을 이용한 무인 비행기·	40
<그림 I -27>	무선전력전송의 적용 분야	41
<그림 I -28>	주파수 대역과 용도	52
<그림 I -29>	기준부하 구성도	54
<그림 I -30>	9kbz~30Mbz 주파수 대역의 방사성 방해 측정을 위한 배치	55
<그림 I -31>	9khz~30Mhz 주파수 대역의 Z축 방향 방사성 방해 측정을 위한 배치·	55

Ⅱ. 무선전력전송 표준화 개발과 특허 동향 ………………………………………63

<그림Ⅱ-1> WPC의 기본 시스템 개요
<그림Ⅱ-2> 3가지 전원 트랜스미터 포지셔닝 타입
<그림Ⅱ-3> 데이터 형식
<그림Ⅱ-4> 시스템 제어 flow
<그림Ⅱ-5> A4WP 조직 ···································
<그림Ⅱ-6> A4WP 의 WPT 시스템 참조모델
<그림Ⅱ-7> A4WP 송신기 상태도
<그림Ⅱ-8> 비콘 구조
<그림Ⅱ-9> 수신기 상태도80
<그림Ⅱ-10> 무선전력전송 시스템 구조80
<그림Ⅱ-11> 통신 및 전력전송 절차81
<그림Ⅱ-12> A4WP는 리젠스(Rezence)
<그림Ⅱ-13> IEC/TC100 의 구조 ······92
<그림Ⅱ-14> 출원년도별 특허출원 동향
<그림Ⅱ-15> 표준화항목별 특허출원 동향
<그림Ⅱ-16> 표준화항목별 특허출원국 현황
<그림Ⅱ-17> 국내 출원인 현황
<그림Ⅱ-18> 국내 TOP10 출원인 표준화항목별 특허출원 현황
<그림Ⅱ-19> 국외 출원인 현황
<그림Ⅱ-20> 국외 TOP10 출원인 표준화항목별 특허출원 현황
<그림Ⅱ-21> 스마트폰 무선충전 기술 관련 특허출원 동향
<그림Ⅱ-22> 무선충전 방식별 특허출원 동향
<그림Ⅱ-23> 자기공명방식 출원인 별 특허출원 동향

<그림Ⅱ-24>	대기업의 자기공명방식 특허출원 기술동향	26
<그림Ⅱ-25>	무선충전 기술 관련 특허 등록 동향	27
<그림Ⅱ-26>	삼성의 무선충전 시스템 특허 도면	29
<그림Ⅱ-27>	애플의 무선충전 패드 특허 도면	30
<그림Ⅱ-28>	애플의 특허 도면	31

Ⅲ. 모바일용 무선전력전송 시장전망 및 제품 트랜드135
<그림Ⅲ-1> 애플 스마트폰 출하량 추이
<그림Ⅲ-2> LG전자 스마트폰 출하량 및 영업이익 추이
<그림Ⅲ-3> 중국 시장 내 스마트폰 비중 추이
<그림Ⅲ-4> 중국 시장 내 중국업체 비중
<그림Ⅲ-5> 지역별 스마트폰 출하량 추이
<그림Ⅲ-6> 모비콤
<그림Ⅲ-7> 태블릿 시장 지역별 출하대수 전망
<그림Ⅲ-8> 세계 휴대폰과 스마트폰의 출하대수 전망
<그림Ⅲ-9> 세계 태블릿PC와 노트북 출하대수 전망157
<그림Ⅲ-10> 무선충전산업 밸류체인
<그림Ⅲ-11> 의료기술과 무선충전 기술의 접목
<그림Ⅲ-12> 삼성 갤럭시 노트에 들어오는 전력 흐름
<그림Ⅲ-13> 넥타 연료전지 시스템

Ⅳ. 모바일기기 분야 주요 업체 개발동향과 비즈니스 전략193
<그림Ⅳ-1> 분기별 구글 실적
<그림Ⅳ-2> 구글의 넥서스용 무선 충전기
<그림Ⅳ-3> 덴소 매출 현황
<그림Ⅳ-4> 덴소의 차량용 무선충전기
<그림Ⅳ-5> 전자유도와 전계 결합 방식의 위치 차이에 대한 효율 비교 206
<그림Ⅳ-6> 전계결합방식 전력전송계의 기본구성
<그림IV-7> 블럭도
<그림Ⅳ-8> 각 블럭도와 전압의 추이
<그림Ⅳ-9> 태양전지의 직류전력으로 공명 필드를 형성하는 모양211
<그림IV-10> 직류공명 방식과 기존의 자계공명 방식의 전력 전송 차이 212
<그림Ⅳ-11> 분기별 애플 실적 ······217
<그림Ⅳ-12> 글로벌 스마트폰 출하 실적 (2013년 4분기 기준)

<그림Ⅳ-13> 분기별 아이폰 판매 추이
<그림Ⅳ-14> 아이워치 컨셉 이미지 ···································
<그림Ⅳ-15> 애플의 무선충전 패드 특허 ···································
<그림Ⅳ-16> A4WP에서 개발 중인 리젠스 무선충전
<그림Ⅳ-17> Wild Charge의 무선충전
<그림Ⅳ-18> 인텔 스마트 무선충전 볼(Bowl)
<그림Ⅳ-19> 스마트폰용 칩 시장 점유율 / 스마트폰용 모뎀 칩 시장 점유율 235
<그림Ⅳ-20> 퀄컴의 스마트워치 토크
<그림IV-21> Foulton의"eCoupled"
<그림Ⅳ-22> 대의 시험용 휴대폰을 충전하는 실험 장면
<그림IV-23> IDTP9023 Application Block Diagram & Spec
<그림Ⅳ-24> 애니모드의 무선충전기 '파워스테이션'
<그림Ⅳ-25> 갤럭시S4 충전패드와 후면 커버 무선충전(EP-WI950KBKG)…263
<그림IV-26> LG WCP-300 ······267
<그림IV-27> LG 무선 충전 패드(WCD-800)
<그림Ⅳ-28> 삼성전기가 무선충전 패드
<그림Ⅳ-29> 자기공명 무선 전력 전송 시스템으로 작동 중인 TV와 스마트폰·276
<그림IV-30> 차버(Chaver, Charger+cover)
<그림Ⅳ-31> 한림포스텍이 최근 출시한 이토스 무선충전기
<그림Ⅳ-32> 이토스(etoss) 무선 충전 커버와 무선 충전 패드
<그림Ⅳ-33> 알에프텍 사업부문별 매출 추이 및 전망
<그림Ⅳ-34> 갤럭시 S4용 파워홀릭 무선충전커버(+NFC)와 배터리 커버의 비교 303
<그림Ⅳ-35> 파워홀릭 mini 원형 무선충전기
<그림Ⅳ-36> 프로토 타입 칩
<그림Ⅳ-37> 3R 회로 구성도
<그림Ⅳ-38> 일반 회로와의 전력 효율 비교
<그림Ⅳ-39> 자기공진방식의 무선전력전송기술 구현 개념도 307

V. EV 무선전력전송 개발동향 및 시장전망
<그림V-1> 주요 자동차업체별 전기차 M/S 추이
<그림V-2> 글로벌 전기차 베스트셀러
<그림V-3> BMW i3 vs LEAF vs Volt
<그림V-4> OEM 소재지별 전기차(HEV 제외) M/S 추이
<그림V-5> 글로벌 전기차 시장 전망

<그림Ⅴ-6> 순수전기차의 주행가능 거리 개선 추세
<그림V-7> 접촉식 충전장치-교류충전(상-일반적, 하-유럽식 시간단축형)··346
<그림Ⅴ-8> 접촉식 충전장치-직류 충전
<그림V-9> 유도식 충전 시스템의 원리
<그림V-10> 배터리 교환방식의 시스템 개념
<그림V-11> 지역별 충전설비(EVSE) 설치 전망(2013-2022)
<그림Ⅴ-12> 급속충전 커넥터의 형상
<그림V-13> 충전인프라 비즈니스 모델
<그림Ⅴ-14> 아이서플라이 무선전력전송 시장 전망
<그림Ⅴ-15> 온라인 전기자동차의 무선전력전송 개념 및 원리368
<그림V-16> 비접촉 충전 시스템
<그림V-17> 일반 충전방식
<그림V-18> 미국 와이트리가 개발한 자동차용 무선충전 시스템 372
<그림V-19> 닛산자동차의 EV비접촉충전시스템
<그림V-20> 닛산자동차의 EV비접촉충전시스템
<그림Ⅴ-21> 닛산자동차의 비접촉 충전시스템 개요
<그림V-22> 볼보의 무선 충전 시스템
<그림Ⅴ-23> 히노 자동차의 비접촉 충전에 의한 전기와 디젤의 하이브리드 버스··378
<그림V-24> 비접촉 충전의 수전(受電)장치 ····································
<그림V-25> 비접촉 충전 버스의 엔진
<그림V-26> 무선충전 관련 계기판
<그림V-27> House-Plus efficiency with electric mobility
<그림V-28> 영국의 전기버스 프로젝트
<그림Ⅴ-29> 퀄컴의 비즈니스 모델
<그림V-30> IPT 시스템 모식도
<그림V-31> IPT 시스템 장착 차량 운행 상상도
<그림Ⅴ-32> 델파이의 무선 충전시스템
<그림Ⅴ-33> 실험계 블럭도
<그림Ⅴ-34> 에바트란의 플러그리스 파워 시스템
<그림Ⅴ-35> 쉐보레볼트용 무선충전기
<그림Ⅴ-36> 자계공명 방식의 개념
<그림Ⅴ-37> 비접촉 충전의 기본 구성
<그림Ⅴ-38> 차재시험의 구성
<그림Ⅴ-39> 차재(車載)시험의 송전 공진회로・수전 공진회로

<그림Ⅴ-40> 주차장의 비접촉 충전의 예
<그림V-41> HEMS와 연휴한 비접촉 충전의 개념 401
<그림V-42> 헤보 파워(Hevo Power)의 무선충전기402
<그림V-43> 헤보 파워사가 개발한 맨홀 뚜껑형태의 전기차 무선충전기402
<그림V-44> KAIST의 온라인 전기자동차 개념 404
<그림V-45> 온라인 전기자동차의 원리 405
<그림V-46> 온라인 전기자동차의 원천기술 406
<그림V-47> 무선충전 전기버스가 운행할 주요 간선 노선 408
<그림V-48> 온라인전기자동차 연도별 로드맵 410
<그림V-49> 고효율 자기유도식 급전/집전 411
<그림V-50> 탑재용 전력시스템412
<그림Ⅴ-51> 광역도로 급전/집전 종합제어 시스템 413
<그림V-52> HW 플랫폼
<그림V-53> 플러그 앤 플레이 기반 SW플랫폼 415
<그림Ⅴ-54> 동력관리 플랫폼416
<그림Ⅴ-55> 급전/집전 시스템 시뮬레이터 417
<그림V-56> 도로위치정보 획득기술 417
<그림V-57> 긴급상황 대처기술
<그림V-58> 급전선 기반 자율주행 419
<그림V-59> 스마트 종합시험 TOOL 개발
<그림V-60> 각종 검증시험용 TOOL 개발 및 환경 구축 420