목차

I. 글로벌 전기차시장의 실태와 장래 전망 ································37
1. 성장세를 보이는 글로벌 전기차 시장 개황 37
1-1. 전기차의 현재(2014년) 위치 37
1) 전기차의 매력37
2) 전기차는 무공해? 37
3) 티핑 포인트39
4) 과제와 대응방안
(1) 높은 차량가격
(2) 짧은 주행거리40
(3) 부족한 충전인프라 42
1-2. 글로벌 전기차 시장 실태와 전망 43
1) 2013년 친환경차 판매동향43
(1) 지역별 성장단계 차별화44
(2) 타입별 EV 성장 지속 ·························47
(3) 업체별 성장세 추이49
(4) 업체 간 연비 경쟁 심화
2) 주요 자동차업체의 시장 전략55
(1) 초기의 선도업체55
(2) 일본의 자동차업체 동향58
(3) 미국의 자동차업체 동향64
(4) 유럽의 자동차업체 동향66
(5) 중국의 자동차업체 동향69
3) 전기차 시장의 변화 전망71
(1) 확산단계의 전기차 시장71
(2) Z.E.V. Credit 거래제도 ······72

(3) 달라진 마케팅 포인트	75
4) 전기차와 배터리 시장 전망	77
(1) 전기차	77
(2) 전기차용 2차 전지	80
1-3. 국내 전기차 시장 현황과 전망	83
1) 시장 환경	83
(1) 정부의 보급목표 확대	83
(2) Battery 가격 하락 ·····	
2) 국내 전기차 업체 동향	
(1) 현대자동차	
(2) 기아자동차	
(3) BMW	
(4) Nissan ······	
(5) 르노삼성	
(6) 한국GM ····································	
2. 국내외 주요국의 전기차 관련 정책 동향	
2-1. 전기차 보급 확대 정책	
1) 미국의 보급 확대 정책	
2) 유럽의 보급 확대 정책	
3) 중국의 보급 확대 정책 4) 일본의 보급 확대 정책	
5) 국내의 보급 확대 정책	
(1) 지원 현황	
(2) 정부의 정책과제 ····································	
(3) 통합 정책의 필요성	
2-2. 주요국별 전기차 R&D 지원 정책 동향	
1) 미국의 R&D 지원정책	
(1) 미국의 R&D 정책 내용 ·····	
(2) 특징 및 유의점	
2) 일본의 R&D 지원정책 ·····	
(1) 일본의 R&D 정책 내용 ·····	120
(2) 특징 및 유의점	124
3) 독일의 R&D 지원정책	126
(1) 독일의 R&D 정책 내용	126
(2) 특징 및 유의점	128
4) 국내의 전기차분야 R&D 지원정책 동향	129
(1) 국내의 R&D 정책 내용	129

(2) 정부의 R&D 투자 분석 ·····	137
(3) 향후 지원방향	141
3. 전기차 시장의 신사업 모델 등장과 사업기회	143
3-1. 전기차 Car Sharing Service ······	143
1) Autolib' ·····	143
2) Car2go	146
3) DriveNow ·····	146
4) Zipcar ·····	
(1) 일반현황	147
(2) Membership ·····	147
(3) Clean fuel & Low-emission vehicle	148
5) 에버온의 Citycar ·····	149
(1) 일반현황	
(2) Membership 및 요금 ·····	
(3) 이용 현황	
(4) 문제점	152
3-2. V2G(Vehicles to Grid)와 xEV ·····	
1) 미국의 VGI 로드맵	
2) 일본 업체들의 사업전략	
3) 국내의 실정	
3-3. 전기차 충전 비즈니스	
1) 충전인프라 설비와 운영	
2) 전기차 충전소 사업모델	
3) 차량 내장형 충전 솔루션	
(1) 파워큐브의 E라인	
(2) 지오라인(Geo-Line) ·····	
4) 전력 분배 시스템	
(1) Packet 제어 충전 방식 ······	
(2) Grid 운영사의 EV 충전 제어 ·····	
5) 전기차 충전 시스템 발전 방향	167
Ⅱ. 국내외 전기차 충전 인프라 관련 사업 실태와 전망	171
1. 전기차 충전기, 솔루션, 인프라 시장 개황 ···································	
1. 신기자 궁신기, 글무선, 인프다 시장 개왕 ···································	
1-1. 전기자 궁전기물과 궁전형식 1) 개요	
1) 계요 2) 접촉식 충전시스템	
2) 접속적 중전시스템 ····································	
	110

(2) 직류충전장치	175
(3) 6.6kW급 OBC ······	175
3) 무선 충전시스템	179
(1) 무선충전기술	179
(2) EV용 무선충전기술	184
(3) EV 무선충전 시장 전망 ·····	190
4) 배터리 교환방식(Battery Swap)	192
1-2. 각국 정부의 충전인프라 투자 확대	193
1) 영국 - 전기버스 프로젝트	193
2) 미국의 정부 주도 EV 충전 인프라 사업 ······	195
3) 일본의 EV 충전 실증사업	195
4) 중국의 EV 충전소 건설 추진	196
2. 충전 인프라 시장의 변화와 대응전략	197
2-1. 대기업의 본격 진출	197
1) 글로벌 동향	197
2) 국내 동향	199
(1) 한전의 SGS 시범사업 개시	
(2) BMW, 포스코ICT, 신세계, 이마트의 협력 모델	
2-2. 완성차업체의 참여 확대	
1) Honda ·····	
2) Toyota ·····	
(1) 무선충전 실증사업	
(2) WiTricity의 무선 전력전송 특허 사용계약	
3) Tesla Motors ·····	
(1) Super Charger 충전 스테이션 ·····	
(2) Battery Swap ·····	
4) BMW	
5) Nissan ·····	
6) 볼보(Volvo) ·····	
7) 미쓰비시(Mitsubishi) ······	
8) 히노(Hino) ······	
9) 크라이슬러(Chrysler)	
3. 해외 주요국 충전인프라 시장과 구축 동향	
3-1. 글로벌 충전인프라 시장 전망	
3-2. 주요국별 충전인프라 구축 동향	
1) 미국	
2) 일본	223

3) 유럽(EU) ······	227
(1) EC의 2020 Clean Fuel Strategy ······	227
(2) 독일	230
(3) 덴마크	231
(4) 프랑스	232
(5) 영국	233
(6) Italy	234
(7) 유럽의 기타국가	234
4) 기타국가	236
(1) 캐나다	236
(2) 오스트리아	237
(3) 중국	237
4. 국내 충전 인프라 시장과 구축 동향	238
4-1. 국내 현황 및 전망	238
1) 국내 시판 충전기 현황	238
2) 국내 충전소 사업 현황	239
(1) 충전인프라 관련 업체 동향	239
(2) 정부의 보급 확대 정책	240
4-2. 국내 공공 충전인프라 설치 절차	246
1) 충전인프라 설치관련 법령	246
2) 공공 충전인프라용 충전기 규격	
(1) 완속충전기	
(2) 급속충전기	248
(3) 충전기 적용 통신 규약 및 단말 장치	
(4) 기타	248
3) 충전소 전기 공급기준(한전)	
4) 업무 처리 절차	250
5. 전기차 충전 관련 표준화 동향	
5-1. 개요 ·····	251
5-2. 주요 표준화 동향	252
1) 국제 표준화 기구	
(1) IEC	252
(2) SAE	
(3) ITU	254
2) 주요 국제 표준 현황	255
(1) 접촉식 충전기 분야	255
(2) 무선충전 분야	258

(3) 커넥터/인렛 분야	
(4) V2G 통신 분야 ······ 264	
(5) EV 충전용 전력 품질 관련 ······ 273	
5-3. 주요 기술별 주요국의 표준화 동향 278	
1) CHAdeMO와 콤보 ···································	
2) 복합 충전 시스템	
3) 중국의 국가표준 280	
4) 국내 표준화 동향 282	
(1) 개관	
(2) 충전용 케이블 283	
(3) 전기차 충전시스템과 홈네트워크 연계 시스템 284	
(4) 전기차 충전인프라 관리시스템 285	
Ⅲ. 국내외 전기차 충전, 충전인프라 관련 비즈니스 참여기업 사업 실	
태와 전략	
1. 국내 주요 사업 참여업체 사업실태와 전략 289	
1-1. 대기업	
1) ㈜만도	
(1) 일반 현황	
(2) 기술 및 Products289	
(3) 사업 동향291	
2) LS산전(주) ····································	
(1) 일반 현황	
(2) 기술 및 Products292	
(3) 사업 동향	
3) ㈜포스코ICT ····································	
(1) 일반 현황	
(2) 사업동향	
1-2. 전문 중견, 중소기업306	
1) 넥스콘테크놀로지(주) 306	
(1) 일반 현황	
(2) 기술 및 Products306	
2) ㈜시그넷시스템 (SIGNET System) ····································	
(1) 일반 현황	
(2) 기술 및 Products	
(3) 사업 동향	
3) ㈜유라코퍼레이션	

(1) 일반 현황
(2) 기술 및 Products 314
(3) 사업 동향 316
4) 이엔테크놀로지(주) (EN Technologies)
(1) 일반 현황
(2) 기술 및 Products 317
5) 중앙제어(주)
(1) 일반 현황
(2) 기술 및 Products 325
6) ㈜코디에스 (KODI-S) ····································
(1) 일반 현황
(2) 기술 및 Products 330
7) (주)피앤이솔루션
(1) 일반 현황
(2) 기술 및 Products334
8) 한국단자공업(주) (Korea Electric Terminal) ··················340
(1) 일반 현황
(2) 기술 및 Products340
9) ㈜올레브(OLEV) ····································
(1) 일반 현황
(2) 기술 및 Products342
10) 그린파워
2. 해외 주요 사업 참여업체 사업실태와 전략
2-1. 북미(미국,캐나다)
1) AeroVironment Inc.(미국) ····································
(1) 일반 현황
(2) 기술 및 Products ····································
2) Aker Wade Power Technologies(미국) ··················366
(1) 일반 현황
(2) 기술 및 Products ····································
3) Car Charging Group Inc.(미국)368
(1) 일반 현황
(2) 기술 및 Products369
4) ClipperCreek Inc.(미국) ····································
(1) 일반 현황
(2) 기술 및 Products372
5) Delphi Automotive(미국) ····································

(1) 일반현황
(2) 기술 및 Products ····································
6) Eaton Corporation Inc.(미국)
(1) 일반 현황
(2) 기술 및 Products ····································
7) Evatran, LLC (미국)
(1) 일반현황
(2) 기술 및 Products ····································
8) EVGoNetwork(미국)
(1) 일반 현황
(2) 기술 및 Products384
9) EV Connect(미국) ····································
(1) 일반 현황
(2) 기술 및 Products ····································
10) General Electric(미국)
(1) 일반 현황
(2) 기술 및 Products391
11) Hevo Inc.(미국) ····································
(1) 일반현황
(2) 기술 및 Products397
12) Leviton Manufacturing Company, Inc.(미국) ······· 399
(1) 일반 현황
(2) 기술 및 Products400
13) LPI(Liberty PlugIns Inc., 미국)406
(1) 일반 현황
(2) 기술 및 Products406
14) Momentum Dynamics Co.(미국) ················410
(1) 일반현황
(2) 기술 및 Products ····································
(2) 기술 및 Products 410 15) Qualcomm Incorporated(미국) 411
15) Qualcomm Incorporated(미국) ··················411
15) Qualcomm Incorporated(미국) 411 (1) 일반현황 411
15) Qualcomm Incorporated(미국) 411 (1) 일반현황 411 (2) 기술 및 Products 411
15) Qualcomm Incorporated(미국) 411 (1) 일반현황 411 (2) 기술 및 Products 411 16) SemaConnect Inc.(미국) 416
15) Qualcomm Incorporated(미국) 411 (1) 일반현황 411 (2) 기술 및 Products 411 16) SemaConnect Inc.(미국) 416 (1) 일반 현황 416

	(2) 기술 및 Products ·····	·· 419
	18) Coulomb Technologies(ChargePoint, 미국) ·······	·· 423
	(1) 일반 현황	
	(2) 기술 및 Products	·· 424
	19) Sun Country Highway Ltd.(캐나다) ······	·· 428
	(1) 일반 현황	·· 428
	(2) 기술 및 Products	·· 428
2-	-2. EU(독일, 프랑스, 기타) ······	·· 434
	1) Siemens AG (독일) ·····	·· 434
	(1) 일반 현황	·· 434
	(2) 기술 및 Products	
	2) Conductix-Wampfler GmbH (독일) ·····	·· 444
	(1) 일반현황	·· 444
	(2) 기술 및 Products	·· 445
	3) Schneider Electric S.A.(프랑스) ·····	
	(1) 일반 현황	·· 447
	(2) 기술 및 Products ·····	·· 448
	4) DBT-CEV(프랑스) ······	
	(1) 일반 현황	
	(2) 기술 및 Products ·····	·· 450
	5) EDF (Electricity of France, Electricite de France S.A.프랑스) ····	
	(1) 일반 현황	
	6) LeGrand(프랑스) ·····	·· 452
	(1) 일반 현황	·· 452
	(2) 기술 및 Products ·····	·· 453
	7) EFACEC Group(포르투칼) ······	
	(1) 일반 현황	
	(2) 기술 및 Products ·····	
	8) Ingeteam Power Technology, S.A.(스페인) ······	·· 467
	(1) 일반 현황	
	(2) 기술 및 Products ·····	
	9) ABB Ltd.(스위스) ·····	
	(1) 일반 현황	·· 473
	(2) 기술 및 Products ·····	·· 473
	10) POD Point(영국) ·····	
	(1) 일반 현황	·· 486
	(2) 기술 및 Products	487

2-3. 아시아, 중동(일본, 이스라엘, 기타)
1) Fuji Electric Co., Ltd.(일본)
(1) 일반 현황
(2) 기술 및 Products
2) Toshiba Corporation(일본) ······ 491
(1) 일반현황491
(2) 기술 및 Products ······ 491
3) JCN(일본) ······ 492
(1) 일반 현황 492
(2) 기술 및 Products ························492
4) IHI Corporation (일본)
(1) 일반현황
(2) 기술 및 Products ······ 494
5) Greenlots(싱가포르) ························494
(1) 일반 현황
(2) 기술 및 Products495
6) PBP(Project Better Place) (이스라엘) ························498
(1) 일반 현황
(2) 기술 및 Products
3. 해외 주요 충전(소)인프라 운영 업체 리스트502
3-1. 국가별
3-2. 업체별506
Ⅳ. 자동차 튜닝(개조)시장과 전기차 개조시장 실태와 전망513
1. 국내 자동차 튜닝(개조) 시장 실태와 전망
1-1. 국내 시장 동향
1) 개념 및 정의
2) 시장 규모 및 전망
3) 국내 튜닝 관련 전문 기업 현황
1-2. 국내 튜닝 산업 활성화 방안과 정책 현황517
1) 필요성
2) 활성화 대책
(1) 튜닝관련 규정 정비
(2) 튜닝절차 홍보 및 간소화
(3) 튜닝 인증제도 도입
(4) 건전한 튜닝 문화 정착
(5) 제작사 튜닝 활성화522

	3) 정부의 정책 추진방향	523
1	l-3. 국내 관련 법안 현황·····	524
2.	국내 전기자동차 개조시장 동향과 전망	527
2	2-1. 국내 전기차 개조시장 동향	527
	1) 관련정책 동향	527
	2) 개조 EV 보급 현황과 R&D 동향	529
	3) 배터리 교체형 전기버스 개조 연구 동향	532
	(1) QTP e-Bus 개념 및 운영 ·····	532
	(2) QTP e-Bus 개조 기술 ······	534
	(3) 향후 연구를 위한 계획	539
2	2-2. 전기차(EV) 개조 시장의 과제와 전망	540
2	2-3. 국내 주요 전기차(EV) 개조업체 사업현황	541
	1) ㈜레오모터스 (LEO Motors Korea Inc.) ······	541
	(1) 일반현황	541
	(2) 기술 현황	542
	(3) Products ·····	543
	(4) 사업 동향	549
	2) ㈜파워프라자 (Power Plaza) ······	550
	(1) 일반 현황	550
	(2) 기술 현황	
	(3) Products ·····	552
	(4) 사업 동향	558
	3) ㈜그린카클린시티 (Green Car Clean City Co., Ltd.) ···································	558
	(1) 일반현황	558
	(2) xEV 관련 현황 ·····	
	해외 전기차 개조시장 동향과 전망	
3	3-1. 개요 ·····	
	1) 미국의 Plug-In Hybrid 자동차 개조 사업 ·····	
	2) 미국의 우편택배 자동차 개조사업	
	3) 일본의 우편택배 자동차 개조사업	
	4) 기타 개조업체 동향	
3	3-2. 해외 주요 전기차(EV) 개조업체 사업현황	
	1) AC Propulsion Inc. (미국) ······	
	(1) 일반현황	
	(2) 기술 현황	
	(3) Products ·····	
	(4) 사업 동향	575

2) Amp Electric Vehicles (Amp Holding Inc.,미국) ····································
(1) 일반현황
(2) 기술 및 Products 576
3) Boulder Electric Vehicle (미국)
(1) 일반 현황
(2) 기술 현황 579
(3) Products
(4) 사업 동향 584
4) Electric Vehicles International (EVI) (미국) ····································
(1) 일반현황
(2) 기술 및 Products ······ 585
(3) 사업 동향 587
5) Enova Systems Inc. (미국)
(1) 일반현황
(2) 기술 현황 588
(3) Products
(4) 사업 동향
6) Phoenix motorcars Inc. (Phoenix MC, Inc., 미국) ······ 593
(1) 일반현황
(2) 기술 현황 593
(3) Products
(4) 사업 동향
7) Tesla Motors (미국)
(1) 일반 현황
(2) Products
8) US hybrid Corporation (미국) ·······601
(1) 일반현황
(2) 기술 현황601
(3) Products
(4) 사업 동향
9) Zenith Motors LLC. (미국)
(1) 일반 현황
(2) Products
(3) 사업 동향
10) PVI (Power Vehicle Innovation) (France)
(1) 일반 현황
(2) 기술 현황

(3) Products
(4) 사업 동향
11) AGV(All Green Vehicles, Netherlands)
(1) 일반현황616
(2) 기술 현황
(3) Products618
(4) 사업 동향
12) e-Traction Europe BV (Netherlands) 620
(1) 일반 현황
(2) 기술 및 Products ······620
(3) 사업 동향
13) 3xE-electric cars (Poland)
(1) 일반현황623
(2) 기술 및 Products ·····623
14) Think Global (Norway) ····· 626
(1) 일반 현황626
(2) EV 개발 및 생산 현황626
15) Wrightbus Ltd. (UK)
(1) 일반 현황629
(2) Products
16) SIM-Drive Corporation (일본) ······ 630
(1) 일반현황630
(2) 기술 현황630
(3) Products
(4) 사업 동향634
4. 해외 주요 전기차 개조업체 리스트635

표목차

I. 글로벌 전기차시장의 실태와 장래 전망 ···································
<표1-1> 호주 여러지역에서 측정한 CO2 배출량 비교 (단위 g/km)38
<표1-2> xEVs 유형별 제조사 현황 (2013.12)
<표1-3> 2013년 친환경차 시장 지역별 판매 45
<표1-4> 2013년 친환경차 시장 타입별 판매 48
<표1-5> 2013년 친환경차 시장 업체별 판매
<표1-6> Toyota 친환경차 주요 전략 ······60
<표1-7> 충전기 회사별 미국 내 충전포인트(2014.03)63
<표1-8> 중국업체, 美 전기차 관련 업체 인수 현황71
<표1-9> 미국 캘리포니아주 ZEV 크레디트 부여 기준(2012년~2017년) ········ 73
<표1-10> 국내 전기차 보급 현황
<표1-11> 국내외 주요 전기차 비교85
<표1-12> 이차전지 협회 회원사 중 3분기 실적을 공시한 7사의 경영실적 … 86
<표1-13> 각국의 자동차 연비/배기가스 규제 현황90
<표1-14> 국가별 전기자동차 구입 혜택 (2012)91
<표1-15> 국가별 전기자동차 구입 혜택 (2013)92
<표1-16> 주요 국가의 xEV 관련 정책 현황93
<표1-17> 2012년 일본의 에코카 보조금 정책 99
<표1-18> 환경부의 전기자동차 보급 계획 (2013.02)100
<표1-19> 그린카 보급 목표(단위 : 천대, 누적)101
<표1-20> 국내 전기차 보급현황 101
<표1-21> 충전인프라 보급 목표(단위 : 천기, 누적)102
<표1-22> ARPA-E, 자동차 분야 프로그램 현황115
<표1-23> EERE, 자동차 분야 프로그램 현황117
<표1-24> 일본 자동차 관련 산업부문 R&D 예산 현황 ······ 121
<표1-25> 자동차 분야의 연료 다양화 기술도122

<표1-26> R&D Lighthouse Project 세부 기술 분야별 지원현황126
<표1-27> 독일의 전기차 관련 3단계 국가전략 모델128
<표1-28> 전기차 분야 2013년 주요 연구개발 분야 및 주요 성과130
<표1-29> 전기차 분야 2014년 주요 연구개발 추진계획130
<표1-30> 사업별 그린카부문 지원 (단위 : 건, 억원)131
<표1-31> 중점 기술의 내용 137
$<\!$
<표1-33> Car2go가 전기차 Carsharing service를 제공하는 도시 146
<표1-34> DriveNow가 서비스를 제공하는 도시 (2013년 12월 현재) 147
<표1-35> 에버온의 시티카 회원제 (2014.04)150
<표1-36> 에버온의 시티카 요금제 (2014.04)151
<표1-37> 전기차 셰어링 '시티카' 월별 이용현황151
<표1-38> 전기차 셰어링 시티카 서비스 이용현황151
<표1-39> 자동차-그리드 통합 로드맵 상호의존적인 3가지 영역155
<표1-40> 글로벌 전기차 업계 충전표준 현황160
Ⅱ. 국내외 전기차 충전 인프라 관련 사업 실태와 전망171
$<$ 표 2 - $1> 6.6kW급 차량탑재형 완속충전기의 시스템 구성도와 전기적 사양 \cdot 176$
<표2-2> EV용 무선 전력전송 현황185
<표2-3> 히노자동차의 무선급전 하이브리드 Bus 사양 ······ 217
<표2-4> USA의 EV 충전소 현황 (2013) ····································
<표2-5> 일본 EV & PHV 타운과 보조금 지급현황 224
<표2-6> 주요 대체연료의 주행거리와 운송범위 ····································
<표2-7> 회원국당 2020년까지 달성해야 할 충전소 수와 전기차의 수 228
<표2-8>독일의 EV 충전소 현황 (2013) ······· 231
<표2-9> Denmark / Norway의 EV 충전소 현황 (2013) ······ 232
<표2-10> France의 EV 충전소 현황 (2013) ···············233
<표2-11> United Kingdom의 EV 충전소 현황 (2013) 233
<표2-12> France의 EV 충전소 현황 (2013) ······· 234
<표2-13> Czech Republic의 EV 충전소 현황 (2013)234
<표2-14> Estonia의 EV 충전소 현황 (2013)
<표2-15> Switzerland의 EV 충전소 현황 (2013)234
<표2-16> Ireland의 EV 충전소 현황 (2013) ······· 235
<표2-17> Netherlands의 EV 충전소 현황 (2013)235
<표2-18> Poland의 EV 충전소 현황 (2013) ······ 235
<표2-19> Portugal의 EV 충전소 현황 (2013) ······· 236
<표2-20> Slovenia의 EV 충전소 현황 (2013) ······ 236

<표2-21> Spain의 EV 충전소 현황 (2013) ·······················236
<표2-22> Canada의 EV 충전소 현황 (2013) ····································
<표2-23> Australia의 EV 충전소 현황 (2013)237
<표2-24> China의 EV 충전소 현황 (2013)237
<표2-25>국내 전기차 충전인프라 관련 업계 현황240
<표2-26> 국내 전기차 및 충전기 보급 현황 241
<표2-27> 전국 지자체 및 공공기관 충전기 운영 현황 243
<표2-28> 기본시설부담금(부가가치세 미포함) 249
<표2-29> 거리시설부담금(부가가치세 미포함)249
<표2-30> 충전소별 공급유형
<표2-31> 전기자동차 충전인프라에 대한 국제 및 국내 표준 현황 255
<표2-32> IEC 커넥터 및 인렛 표준 현황 ···································
<표2-33> SAE J1772의 AC 충전 규격 ···································
<표2-34> SAE J1772의 DC 충전 규격 ···································
<표2-35> V2G 통신의 유즈케이스 종류 ······ 265
<표2-36> PLC 기술 비교 (HomePlug GreenPHY 와 G3)270
<표2-37> 글로벌 스마트그리드용 통신표준 현황270
<표2-38> 글로벌 전기차 업계 충전표준 현황 ···································
<표2-39> 전기자동차 전력 품질 관련 고려사항 273
<표2-40> 전력 품질 및 안전성 관련 국제표준 진행 동향 275
<표2-41> 기타 관련 국제표준 276
<표2-42> SAE J2894/1 주요 표준화 항목 ···································
<표2-43> 각국의 급속충전기 규격 개요 279
<표2-44> 전기차 관련 국내표준 추진 현황 282
Ⅲ. 국내외 전기차 충전, 충전인프라 관련 비즈니스 참여기업
사업 실태와 전략289
<표3-1> ㈜만도프로필 ····· 289
<표3-2> 만도의 자동차 부품 전반
<표3-3> Mando Footloose의 제원 ············291
<표3-4> LS산전(주) 프로필 ······· 292
<표3-5> LS산전의 특허 정보 292
<표3-6> LS산전의 완속 충전 스탠드 제원 293
<표3-7> LS산전의 급속 충전 스탠드 특성 294
<표3-8> LS산전의 급속 충전 스탠드 제원 ······ 294
<표3-9> LS산전의 Wall Box 충전기 사양 295
<표3-10> Mando의 Cordset 휴대용 충전기 296

<班3-11>	LS산전의 충전 관리 시스템 특성296
<班3-12>	LS산전의 600V IGBT Module(6-Pack) 특징과 적용 장치 297
<班3-13>	LS산전의 1200V IGBT Module(6-Pack) 특징과 적용 장치 297
<班3-14>	LS산전의 전기차용 부품 종류 ····· 297
<班3-15>	LS산전의 PCU 특성298
<班3-16>	LS산전의 PCU 사양298
<班3-17>	LS산전의 OBC 사양
<班3-18>	LS산전의 Relay 특징299
<班3-19>	LS산전의 Relay 사양300
<班3-20>	LS산전의 PRA/BDU 구조도 300
<班3-21>	LS산전의 Safety Switch 구조도 ···································
<班3-22>	㈜포스코ICT 프로필 ···································
<班3-23>	넥스콘테크놀로지(주)의 프로필306
<班3-24>	넥스콘테크놀로지(주)의 인증 정보306
<班3-25>	넥스콘테크놀로지(주)의 특허 정보307
<班3-26>	넥스콘테크놀로지(주) 충전기의 구성표308
<班3-27>	넥스콘테크놀로지(주) 충전계통308
<班3-28>	넥스콘테크놀로지(주) 충전기309
<班3-29>	넥스콘테크놀로지(주) SM과 PCM ···································
	넥스콘테크놀로지(주) Battery Pack과 BMS310
<班3-31>	㈜시그넷시스템 프로필310
<班3-32>	㈜시그넷시스템의 특허 정보311
<班3-33>	㈜시그넷시스템의 Switching Charge Method의 특징311
<班3-34>	시그넷시스템의 EV용 AC Standard Charger HB7K-EV 제원 312
<班3-35>	시그넷시스템의 EV용 DC Quick Charger HB50K-EV 제원 313
	㈜유라코퍼레이션 프로필314
<班3-37>	㈜유라코퍼레이션의 기술제휴 내용 314
<班3-38>	이엔테크놀로지(주) 프로필317
<班3-39>	이엔테크놀로지(주)의 인증 정보317
<班3-40>	이엔테크놀로지(주)의 특허 등록 정보318
	이엔테크놀로지(주)의 특허 출원 정보318
<班3-42>	이엔테크놀로지(주)의 충전기 제품군319
<班3-43>	이엔테크놀로지(주)의 충전기 제품군 사양320
<班3-44>	이엔테크놀로지(주)의 충전기 제품군 특징320
<班3-45>	이엔테크놀로지(주)의 Ev용 Quick Charger (Hercules 50C) 제원 320
<班3-46>	이엔테크놀로지(주)의 Ev용 Quick Charger (EnerStream
	20C & 20CHV) 제원 ···································

<표3-47> 이엔테크놀로지(주)의 BMS321
<표3-48> 이엔테크놀로지(주)의 BMS 제원
<표3-49> 이엔테크놀로지(주)의 계통연계 양방향 태양광
전력변환장치 (EnerHub 3) 제원 ·······323
<표3-50> 이엔테크놀로지(주)의 계통연계 양방향 태양광
전력변환장치 (EnerHub 25) 제원 ·······324
<표3-51> 중앙제어(주) 프로필324
<표3-52> 중앙제어의 충전기 운영 시스템 주요기능(관리자/사용자)327
<표3-53> 중앙제어가 EV 충전기 사용자에게 제공하는 서비스 ······327
<표3-54> 중앙제어의 완속 충전기 (AC EV Charger) 사양 및 특징328
<표3-55> 중앙제어의 급속 충전기 (DC Quick Charger) 사양 및 특징 328
<표3-56> 중앙제어의 급속/완속 겸용 충전기 사양 및 특징329
<표3-57> 중앙제어의 완속 충전기 (AC EV Charger) 사양 및 특징329
<표3-58> (주)코디에스 프로필
<표3-59> 코디에스의 특허 등록 정보
<표3-60> 코디에스의 특허 출원 정보
<표3-61> 코디에스의 해외특허 출원/등록 정보
<표3-62> 코디에스의 인증 정보
<표3-63> 코디에스의 급속충전기 (50kW) 사양 및 특징332
<표3-64> 코디에스의 급속충전기 (50kW) 설치사례
<표3-65> 코디에스의 완속충전기 사양 및 특징332
<표3-66> 코디에스의 완속충전기 설치사례333
<표3-67> (주)피앤이솔루션 프로필
<표3-68> ㈜피앤이솔루션의 특허 정보
<표3-69> 피앤이솔루션의 수행 정책과제
<표3-70> 피앤이솔루션의 전기차 충전기 제품군336
<표3-71> 피앤이솔루션의 전기자동차 전장품
<표3-72> 한국단자공업(주) 프로필340
<표3-73> 한국단자공업(주)의 특허정보340
<표3-74> 한국단자공업(주)의 EV/HEV/PHEV용 제품군341
<표3-75> OLEV 프로필 ···································
<표3-76> 구미시의 OLEV 급전 시스템 설치 장소 ······ 346
<표3-77> AeroVironment사의 EVSE-RS Charging Station 제원358
<포3-78> AeroVironment사의 EVSE-RS Plug -In Charging Station 359
<포3-79> AeroVironment사의 Portable Charger TurboCord360
<표3-80> AeroVironment사의 충전기별 충전시간 비교
<표3-81> AeroVironment사의 EV50-PS Public Fast Charging Station 361

<표3-82> AeroVironment사의 EV50-FS Fleet Fast Charging Station 362	2
<班3-83> DC Fast Charger Sarge ·························366	3
<표3-84> Aker wade의 multi-voltage Fast Charger 종류 및 특징	7
<班3-85> Blink Pedestal charging station Spec)
<표3-86> Blink DC 급속 충전기 Spec)
<표3-87> ClipperCreek의 HCS Series EVSE 제원	2
<표3-88> ClipperCreek의 CS Series EVSE 제원	3
<표3-89> ClipperCreek의 LCS Series EVSE 제원	4
<표3-90> ClipperCreek의 ECS Series EVSE 제원	
<표3-91> Delphi Automotive PLC 프로필 ···································	5
<표3-92> Delphi의 Hybrid & Electric Vehicle Product Portfolio ······· 37	7
<표3-93> Eaton Corporation Inc. 프로필 ···································	
<표3-94> Evatran, LLC 프로필	1
<표3-95> EVGoNetwork의 San Francisco Bay Area 충전망 이용요금 385	
<표3-96> GE의 충전기 비교 ···································	1
<표3-97> GE의 WattStation EV Charger Specs	2
<표3-98> GE의 WattStation Connect Service Plan별 기능의 구성393	3
<표3-99> GE의 WattStation Connect Service 기능 상세 내용393	
<표3-100> GE의 DuraStation	4
<표3-101> GE의 DuraStation Mounting options	4
<표3-102> GE의 충전기 DuraStation의 특징	4
<표3-103> GE의 충전기 DuraStation의 제원	5
<표3-104> Leviton의 NY EV Funding Program 내용)
<표3-105> Leviton의 Evr-Green® Residential/Light Commercial	
Charging Station ————40	1
<표3-106> Leviton의 Evr-Green Home Charging Station Pre-Wire System ··· 402	2
<표3-107> Leviton의 Evr-Green® 120 Portable Charger ······ 403	3
<표3-108> Leviton의 Evr-Green® Fleet Level 2 Networked Charging Station 403	3
<표3-109> Leviton의 Evr-Green® 4000 Dual Port Level 2	
Public Use Charging Station40	4
<표3-110> Leviton의 Evr-Green® 4000 Dual Port Level 2	
Public Use Charging Station Specs. 405	5
<표3-111> Liberty PlugIns의 Synchronous Code Generation (SCG)용	
Keypad와 특징 ···································	
<표3-112> Liberty PlugIns의 Pay by Cell System과 특징408	3
<표3-113> Qualcomm Incorporated 프로필 ··················41	1
<표3-114> SemaConnect의 ChargePro Charging Ststion의 제원	

	SemaConnect의 SemaCharge 특징 ············418
	Witricity Corporation 프로필 ················419
	Witricity의 미국외 등록 특허정보420
	Witricity의 등록 PCT정보 ···········421
	Witricity의 미국내 등록 특허정보421
	Witricity의 WiT-2000 Kit ···········422
	Witricity의 WiT-2000M solution ···········422
	Witricity의 WiT-3300 System ···········422
	Witricity의 WiT-3300 System Specification ········· 423
	CT 4000 Series 충전기 기술 사양 ··················425
<班3-125>	CT 4000 Series 충전기 안전 사양 ··················426
<班3-126>	ABB Terra 23 multi-standard DC charging station 사양 430
	ABB Terra 53 multi-standard DC charging station 사양 431
	Sun Country Highway의 Level II evCHARGERS ······· 432
	Level II 40/60/100 amp evCHARGER 사양 ············ 432
	Level II 25 amp evCHARGER 사양 ························433
	Level II 15 amp evCHARGER 사양 ··················433
	Siemens AG 프로필 ···································
	Siemens의 SIVETEC Induction Motors 특성 ············437
	Siemens의 SIVETEC Power Electronics Specs ················437
	Siemens의 SIVETEC Permanent Magnet Motors 특성 438
	Siemens의 충전기 (Charging Unit) 모델 ··················439
	Siemens의 충전소 설치 개념도 ···································
	Siemens의 Charging Station 설치 부품 ························440
	Siemens의 Charging Station 설치 예 1/2 ···································
	Siemens의 Charging Station 설치 예 2/2 ························442
	Conductix-Wampfler GmbH 프로필 ······ 444
<班3-142>	Conductix-Wampfler GmbH 온라인 무선충전 시스템
	실증 예 Turin Italy ·························446
<班3-143>	Conductix-Wampfler GmbH 온라인 무선충전 시스템
	실증 예 Genoa Italy
	Schneider Electric의 가정용 Charger EVLink WallBox 448
	Schneider Electric의 EVlink quick charger ······· 448
	DBT-CEV의 충전기 특징 ·············450
<班3-147>	EDF 프로필 ························451
<班3-148>	Le Grand의 벽걸이형 충전기 Pass & Seymour®
	Level 2, 30A EV Charging Station 특징 및 제원453

	EFacec의 가정용 충전기 특징455
	EFacec의 가정용 충전기 사양456
	EFacec의 QC-20 Quick Charger 특징 ···········457
	EFacec의 QC-45 Quick Charger 특징 ········459
	EFacec의 QC-45 Quick Charger 사양460
<班3-154>	EFacec의 QC-50 Quick Charger 특징 ··········462
<班3-155>	EFacec의 QC-50 Quick Charger 사양462
<班3-156>	Pole Mount 형 Public Charger Module의 구성 및 설치 463
	Pole Mount 형 Public Charger Module의 사양 464
<班3-158>	AC Charger Station의 구성 및 설치 ··································
<班3-159>	Pole Mount 형 Public Charger Module의 사양 466
<班3-160>	Ingeteam의 EV Charging Network INGEREV의 Charging Mode $\cdots~468$
<班3-161>	Ingeteam의 EV Charging Network INGEREV의 통신 Protocol·468
	Ingeteam의 EV Charging Network INGEREV의 충전기 종류별 특징 ·· 469
	INGEREV GARAGE의 제원 ·······················470
	INGEREV® CITY의 제원 ························471
	INGEREV ROAD의 제원 ························472
	ABB의 Terra 51 Charge Station 특징 ·············474
	ABB의 Terra 51 Charge Station 기술 사양 ···································
	ABB의 Terra 52 Charge Station 특징 ·············476
	ABB의 Terra 52 Charge Station 기술 사양 ·······················477
	ABB의 Terra Charge Station 53 Series ·······················478
	ABB의 Terra Charge Station 53 Series의 특징 ·················479
	ABB의 Terra Charge Station 53 Series의 종류별 사양 479
	ABB의 Terra Charge Station 53 Series의 일반 사양 ······· 480
	ABB의 Terra Charge Station 23 Series의 특징 ·················481
<班3-175>	ABB의 Terra Charge Station 23 Series의 종류별 사양 481
	ABB의 Terra Charge Station 23 Series의 일반 사양 ············ 482
<班3-177>	충전망의 목적과 크기에 따른 ABB의 연결 서비스 제공485
	POD Point의 Free Home Charge Unit ······················487
	POD Point의 충전기 사양 ···································
	Fuji Electric의 25kW DC Quick Charger 사양490
	IHI Corporation 프로필 ············493
	Greenlots 의 사업 분야
	Greenlots의 Mobile App을 통한 Driver Solution의 기능과 모습 497
<班3-184>	Greenlots의 충전 인프라에서 제공하는 충전기 모델 498
<班3-185>	PBP(Project Better Place) 프로필 ······· 498

IV. 자동차 튜닝(개조)시장과 전기차 개조시장 실태와 전망 $\cdots\cdots 513$
<표4-1> 튜닝의 분류514
<표4-2> 튜닝의 종류와 국내의 전문기업
<표4-3> 독일 인증제도의 제정 및 시행 현황 519
<표4-4> VDAT가 BMW2010년형 BMW 1 series 쿠페를 튜닝해서
발표한 경찰 튜닝카519
<표4-5> 인증기관 지정(예) 520
<표4-6> 튜닝인증 절차(안)
<표4-7> 산업통상자원부의 4개 실행과제
<표4-8> 구조•장치변경 승인을 받지 않아도 되는 경미한 구조•장치 524
$<$ ± 4 –9> QTP e−Bus $~~$ E−Power train specification \cdots $~~$ 536
$<$ ± 4 –10> QTP e–Bus $∂$ Battery specification \cdots 537
<표4-11> 차량 속도에 따른 SOC 변화량, 모터 출력 및 BMS에서 제공하는
최대 출력 제한
$<$ 표4-12> 시간에 따른 SOC 변화량, 모터 토크, 구동 모터 및 보조 모터 출력 \cdot 539
<표4-13> ㈜레오모터스 프로필541
<표4-14> ㈜레오모터스의 특허 정보542
<표4-15> ㈜레오모터스의 연구/개발 내용
<표4-16> 1kW/3kW/5kW e-Box 제원 ······ 543
<표4-17> QuattiX 외괌 및 제원545
<표4-18> EleCo의 제원 ···································
<표4-19> Leo Motors의 e-Sports Car 제원과 외관546
<표4-20> Leo Motors의 R&D 개조 Projects 1/2 ······· 547
<표4-21> Leo Motors의 R&D 개조 Projects 2/2 ······· 548
<표4-22> ㈜파워프라자 프로필
<표4-23> 파워프라자의 보유 기술 551
<표4-24> 파워프라자의 EV 관련 R&D 현황552
<표4-25> 파워프라자의 스페셜 에디션 '예쁘자나S4' ······ 553
<표4-26> 파워프라자의 AC-DC Converter FS Series555
<표4-27> 파워프라자의 AC-DC Converter CFS5 Series555
<표4-28> 파워프라자의 DC-DC Converter DNS Series556
<표4-29> 파워프라자의 DC-DC Converter UQC Series
(Intermediate Bus Converter)556
<표4-30> 파워프라자의 DC-DC Converter YPM600 Series557
<표4-31> 파워프라자의 DC-DC Converter SPTS Series ······ 557
<표4-32> (주)그린카클린시티 프로필558
<표4-33> 그린카 클린시티의 트랜스(TRANS) 시리즈560

<班4-34>	뉴욕의 개조 대상 Hybrid 자동차 현황(2004년 이후 모델)	561
	뉴욕의 PHEV 개조사업자 선정 결과	
	EV 개조 KIT제원 ·····	
	AC Propulsion Inc. 프로필 ·····	
	Copper Rotor Motor 제원 ·····	
	ACP의 AC-150 motor 제원 ·····	
	AC-150 Gen-2 EV Power System 외관 및 제원 ·····	
<班4-41>	AC-150 Gen-2 EV Power System 특징 ·····	570
<翌4-42>	AC-150 Gen-2 EV Power System의	
	OPERATING PERFORMANCE ······	
	LCM-150 제원 ·····	
<班4-44>	Ac Propulsion의 eBox 제원 ·····	574
	Amp Electric Vehicles 프로필 ·····	
	AMP의 Original Chasis ·····	
	Boulder Electric Vehicle 프로필 ·····	
	Boulder EV Truck 500 Series ·····	
	Boulder EV DV-500 제원 ·····	
	Boulder EV FB-500s 제원 ·····	
	Boulder EV SB-500 제원 ·····	
<翌4-52>	Boulder EV 500 Chassis 제원 ·····	582
	Boulder EV 1000 Series ·····	
	Boulder EV DT-1000 제원 ·····	
	Boulder EV FB-1000 제원 ·····	
	Electric Vehicles International 프로필 ·····	
	EVI의 자체제작 EVs 제원 1/2 ·····	
	EVI의 자체제작 EVs 제원 1/2 ·····	
	Enova Systems Inc. 프로필 ·····	
	Phoenix MC, Inc. 프로필 ·····	
	Phoenix의 EV용 Platforms ·····	
	Tesla Motors 프로필 ·····	
	테슬라 'Model S'의 battery 제원 ·····	
	테슬라의 2013년형 'Model S' Battery 제원	
<翌4-65>	US hybrid Corporation 프로필 ·····	601
<班4-66>	US Hybrid의 Integrated Electric Drive Unit (EDU)	
	Products Specifications	603
<翌4-67>	US Hybrid의 DC-DC Convertor Isolated-Uni-Directional Specs	604
<班4-68>	US Hybrid의 DC-DC Convertor Non-Isolated-Uni-Directional Specs ···	605

<翌4-69>	US Hybrid의 DC-DC Convertor Non-Isolated-Bi-Directional Specs $\cdots\cdots$ 605
605	
<	US Hybrid의 DC-DC Convertor Non-Isolated-Bi-Directional Specs 606
<亞4-71>	Safety Disconnect Unit "SDU" 작동도 및 제품표 ················607
<	Zenith Motors LLC. 프로필 ·······608
<	Zenith Motors Electric Passenger Van 제원608
<	Zenith Motors Electric 350 Cargo Van 제원609
	PVI 프로필 ····· 609
<班4-76>	PVI의 L Powertrain's Turnkey Solutions612
<班4-77>	PVI의 XL Powertrain's Turnkey Solutions ········613
<班4-78>	PVI의 XXL Powertrain's Turnkey Solutions ···········614
<班4-79>	All Green Vehicles 프로필 ·······616
	AGV의 Technology R&D ············617
	e-Traction Europe BV 프로필 ······620
<翌4-82>	e-Traction의 TheWheel SM440 제원 ······620
<班4-83>	e-Traction의 TheWheel SM500 및 Sub-Types 제원621
	e-Traction의 TheDrive MD300A/MD25A 제원 ······621
	e-Traction의 TheControl PCM/VEM 제원 ······622
	3xE-electric cars 프로필 ······623
	Think Global 프로필 ······626
	Wrightbus Ltd. 프로필 ······629
<班4-89>	Wrightbus Hybrid Electric Bus
<班4-90>	SIM-Drive Corporation 프로필 ······630
	SIM Drive의 In-Wheel Motor System ·······632
<班4-92>	Sim Drive의 개발 성과633
<班4-93>	Sim Drive의 Citroen DS3 Electrum의 제원

그림목차

I. 글로벌 전기차시장의 실태와 장래 전망 ······	37
<그림1-1> 주요 전기차별 차량 가격 및 주행거리(배터리 용량)	• 40
<그림1-2> EV 판매 추이 및 2013년 지역/모델별 비중	. 49
<그림1-3> 친환경차 주요 업체 점유율 변화(좌)와 친환경차 차급 구성	
및 전용차 비중(우)	· 51
<그림1-4> Toyota 연도별 HEV 판매 추이, 100만 대 누적 달성 기간 추이 …	· 52
<그림1-5> Honda의 신 모델 전략 ·····	. 54
<그림1-6> 혼다 i-DCD, i-MMD와 Toyota THS 구간별 동작 비교	. 54
<그림1-7> 주요 업체 HEV 모델 출시 및 연비 현황	. 55
<그림1-8> 주요 자동차업체별 전기차 Market Share 추이	. 57
<그림1-9> OEM 소재지별 전기차(HEV 제외) M/S 추이	. 57
<그림1-10> 글로벌 전기차 베스트셀러	· 58
<그림1-11> Toyota 1인승 COMS EV	• 60
<그림1-12> (좌)혼다 하이브리드의 고연비 기술, (우)혼다 하이브리드	
기술 포트폴리오	· 61
<그림1-13> BMW i3 vs LEAF vs Volt	
<그림1-14> 글로벌 전기차 시장 전망	
<그림1-15> 전 세계 지역별 EV 시장 예측	· 77
<그림1-16> LD(Light Duty) PEV(Plug-in Electric Vehicle) 지역별	
대도시의 연간 판매 전망(World Markets: 2014-2023)	
<그림1-17> 자동차 회사별 EV 시장 예측	• 79
<그림1-18> HEV 배터리팩 시장 현황	
<그림1-19> 배터리팩 시장 현황	· 81
<그림1-20> Cell 가격 전망(EV, NMC Cathode(좌)), EV용 배터리팩	
가격 전망(우)	
<그림1-21> 국내 시판(예정) 중인 주요 전기차	· 84

<그림1-22>	바이오연료 기술분야 기술로드맵 123
<그림1-23>	연료전지자동차/수소관련 기술분야 기술로드맵123
<그림1-24>	전기자동차/전력저장기술 분야 기술로드맵 124
<그림1-25>	사업별 그린카 부문 지원 금액 비율132
<그림1-26>	산업통상자원부의 그린카 차량종류별 지원현황133
<그림1-27>	전기자동차 기술별 지원현황134
<그림1-28>	(Plug-in)Hybrid 기술별 지원현황135
<그림1-29>	공통핵심기술별 지원현황136
<그림1-30>	27대 중점녹색기술별 투자 중 고효율 저공해 차량기술 비용 … 137
<그림1-31>	고효율 저공해 차량기술 투자 추이(2008~2012년) 138
<그림1-32>	고효율 저공해 차량기술 주요 부처별, 연구개발단계별,
	연구수행주체별 투자 비중(2012)138
<그림1-33>	고효율 2차전지기술 투자 추이(2008~2012년) (단위 100만원) · 139
<그림1-34>	고효율 2차전지기술 주요 부처별, 연구개발단계별,
	연구수행주체별 투자 비중(2012)140
<그림1-35>	파리 시내 샹젤리제 거리에 위치한 오토리브 무인대여소 모습 \cdot 144
<그림1-36>	Bollor 사의 Autolib' 서비스 ·······145
<그림1-37>	에버온의 시티존 (2014.04) 149
<그림1-38>	급속 충전소 안내 (2014.04)150
	한전과 환경부의 공용 충전소153
	급속충전 커넥터의 형상160
<그림1-41>	충전인프라 비즈니스 모델161
<그림1-42>	신재생에너지를 활용한 전기자동차 충전 통합 시스템 개요 $\cdots\cdots$ 168
Ⅱ. 국내외	전기차 충전 인프라 관련 사업 실태와 전망171
<그림2-1> 기	전기자동차 충전시스템 구성 체계 및 관련표준174
	Charging Waveform (좌)Input Voltage 220Vrms→260Vrms,
($\ \ \ \ \ \ \ \ $
<그림2-3> 6	6.6kW OBC의 역률 및 효율 그래프178
<그림2-4> I	EV용 무선 충전 시스템의 원리180
	자기유도방식 무선 충전의 원리181
	전자기파 방식의 원리181
	자기 공명 방식의 원리182
	온라인 무선충전 기술의 사업분야186
	HEMS와 연휴한 비접촉 충전의 개념189
	배터리 교환방식의 시스템 개념193
<그림2-11>	영국의 전기버스 프로젝트194

<그림2-12>	한전의 SGS 시범사업 개념 및 구조도	200
<그림2-13>	미국 와이트리가 개발한 자동차용 무선충전 시스템	206
<그림2-14>	Solar Pannel로 덮여있는 테슬라의 'Super Charger' 충전 스테이션 ····	207
<그림2-15>	Tesla의 북미지역 'Super Charger' 스테이션 현황 2014년 4월	208
<그림2-16>	Tesla의 북미지역 'Super Charger' 스테이션 계획 2015년까지 ·······	208
<그림2-17>	Tesla의 유럽지역 'Super Charger' 스테이션 현재(좌), 2014년 말(우) · :	209
<그림2-18>	닛산자동차의 EV무선충전시스템	211
<그림2-19>	닛산자동차의 무선 충전시스템 개요	212
<그림2-20>	볼보의 무선 충전 시스템 원리 및 구성도	213
<그림2-21>	히노 자동차의 무선 충전에 의한 전기와 디젤의 하이브리드 버스 :	215
<그림2-22>	무선 충전의 수전(受電)장치	215
<그림2-23>	무선 충전 버스의 엔진	216
<그림2-24>	무선충전 관련 계기판	217
<그림2-25>	House-Plus efficiency with electric mobility	219
<그림2-26>	지역별 충전설비(EVSE) 설치 전망(2013-2022)	220
<그림2-27>	국가별 비주거지 전기차 충전소 설치 현황 (2012)	222
<그림2-28>	국내에 시판되는 충전기 현황 (2014.04)	238
	전국의 충전소 설치/운영 현황(2014.04)	
	충전정보시스템 개념도	
	관련 법령 체계	
<그림2-32>	관련 법령 검토 절차	247
	공공 충전인프라 설치 업무 절차 개요도	
<그림2-34>	전기자동차 주요 표준화 기구	253
<그림2-35>	전기차(EV)에 대한 계통 유입 서지(surge) 시험 개념도	256
	PLC 이용 직류 충전장치 시스템 제어 및 통신 시퀀스 구성도·	
	국내외 커플러 규격 표준화 동향	
	PLC 기술의 간섭 영향 분석 시나리오	
	전기자동차 전력 품질과 안전성을 위한 주요 고려 사항	
	향후 관련 표준 진행 방향 전망	
	국가별 교류 및 직류용 커넥터-인렛 형상	
	전기자동차 교류/직류 충전용 케이블 구성	
	전기차 충전시스템과 홈네트워크 연계 시스템 구성 개요	
<그림2-44>	전기자동차 충전인프라 관리시스템 구성도	285
	전기차 충전, 충전인프라 관련 비즈니스 참여기업	_
	실태와 전략 ···································	
<그림3-1>	넥스콘테크놀로지(주) 충전기의 구성도	307

<그림3-2> ㈜시그넷시스템의 Switching Charge Method의 특성 그래프 ···· 311
<그림3-3> 유라코퍼레이션의 xEVs용 부품315
<그림3-4> 유라코퍼레이션의 전장 부품
<그림3-5> 중앙제어의 EV 충전 인프라 운영 소프트웨어 ······· 325
<그림3-6> 중앙제어의 EV 충전기 운영 시스템 구성 및 동작 ······ 326
<그림3-7> 피앤이솔루션의 연구 분야
<그림3-8> 피앤이솔루션의 전기자동차 충전 인프라 사업-제주도 스마트
그리드 실증단지339
<그림3-9> 피앤이솔루션의 전기자동차 충전 인프라 사업-중부고속도로
시범사업339
<그림3-10> KAIST의 온라인 전기자동차 개념343
<그림3-11> 올레브(KAIST)의 온라인 무선 충전 기술(SMFIR) 원리 343
<그림3-12> 온라인 전기자동차의 원천기술344
<그림3-13> 무선충전 전기버스가 운행할 주요 간선 노선345
<그림3-14> 온라인전기자동차 연도별 로드맵347
<그림3-15> 고효율 자기유도식 급전/집전 기술348
<그림3-16> OLEV용 탑재용 전력시스템 기술 349
<그림3-17> 광역도로 급전/집전 종합제어 시스템349
<그림3-18> OLEV의 HW 플랫폼 시스템 ···································
<그림3-19> OLEV의 플러그 앤 플레이 기반 SW플랫폼351
<그림3-20> OLEV의 동력관리 플랫폼 System
<그림3-21> OLEV의 급전/집전 시스템 시뮬레이터352
<그림3-22> OLEV의 도로위치정보 획득기술353
<그림3-23> OLEV의 긴급상황 대처기술354
<그림3-24> 급전선 기반 자율주행 OLEV
<그림3-25> 스마트 종합시험 TOOL 개발
<그림3-26> 각종 검증시험용 TOOL 개발 및 환경 구축356
<그림3-27> AeroVironment사의 Portable Charger TurboCord360
<그림3-28> VSE-RS Multi Unit Charging Station의 형태
<그림3-29> PosiChargeTM SVS/DVS 제원 ························364
<그림3-30> PosiChargeTM 2500 Series charger ········· 365
<그림3-31> PosiChargeTM outdoor fast charge system
<그림3-32> Blink의 Charging Locations (1588개소) 과 Charger
(3947기) (2013년) 368
<그림3-33> 델파이의 무선 충전시스템377
<그림3-34> Delphi의 xEVs용 커넥터류
<그림3-35> Evatran의 플러그리스 파워 시스템

<그림3-36>	Chevrolet 볼트용 무선충전기 383
<그림3-37>	EVGoNetwork 서비스 지역 Map ···································
<그림3-38>	EV Connect의 Smart EV Charging Station Network 개념도 ·· 388
<그림3-39>	EV Connect가 EV Charging Solutions Provider에게
	제공하는 Service
<그림3-40>	OCPP를 이용한 EV Connect Network 개념도 ······ 389
<그림3-41>	EV Connect의 EVCloudTM 구성 및 개념도 ············390
<그림3-42>	GE의 충전 인프라 WattStationTM Connect 분포도 396
<그림3-43>	헤보 파워(Hevo Power)의 무선충전기 설치 형태 398
<그림3-44>	헤보 파워사가 개발한 맨홀 뚜껑형태의 전기차 무선충전기 398
<그림3-45>	Liberty PlugIns의 Hydra system 구성도 ·······················406
<그림3-46>	HydraTM R Charging System의 기본 설치 및 Set up 구성도 ·· 409
<그림3-47>	Hydra S-6 Charging System 설치 예 ·············409
<그림3-48>	Qualcomm의 WEVC, HALO Technology System Architecture 412
<그림3-49>	Qualcomm의 WEVC, HALO Technology System Architecture 개념도 412
<그림3-50>	Qualcomm의 WEVC, HALO Technology Alignment ············ 413
<그림3-51>	퀄컴 Halo WEVC Technology의 비즈니스 모델 414
<그림3-52>	SemaConnect의 ChargePro Charging Ststion의 Mount Specs. 418
<그림3-53>	Witricity의 Wireless Electricity 개념도420
<그림3-54>	충전기 CT 4000 Series424
<그림3-55>	Chargepoint - USA Charging Network
	Sun Country Highway의 EV Charger Station Grid ··········· 429
<그림3-57>	Siemens의 The flexible ELFA System ············435
<그림3-58>	Siemens의 ELFA 작동범위 (in Series Hybrid System) ········· 435
<그림3-59>	Siemens의 Inductive Charging 개념도 ···········438
<그림3-60>	Witricity와 Daimler사 개발한 무선충전 System의 개념도 445
<그림3-61>	Conductix-Wampfler GmbH 온라인 무선충전 시스템 실증
	Turin과 Genoa Italy ····································
<그림3-62>	DBT-CEV의 유럽 내 충전소 Network 현황(2013.12) ············ 449
<그림3-63>	EFacec의 QC-20 Quick Charger 구성 ···········458
<그림3-64>	EFacec의 QC-45 Quick Charger 구성 ············461
	Ingeteam의 EV Charging Network INGEREV 구성도 ··········· 467
	ABB의 Miniature circuit breakers (MCBs) ···················483
<그림3-67>	POD Point의 충전 네트워크 현황 (2014) ····································
<그림3-68>	일본 국내의 주유소와 EV(EV)용 충전기점 수 492

${ m IV}$. 자동차 튜닝(개조)시장과 전기차 개조시장 실태와 전망 $\cdots\cdots 513$
<그림4-1> 인증절차 예(GR 인증 예시)521
<그림4-2> 구조변경 방문승인(위) 및 전자승인(아래) 절차도525
<그림4-3> 소형화물자동차(택배차량)를 전기자동차로 개조하여 시범
운행한 전기자동차(2011년)530
<그림4-4> 2010년 G20 정상회의 지원에 활용된 카니발 개조 전기자동차 …530
<그림4-5> 각종 개조 EVs ······531
<그림4-6> 배터리 교환 시스템(QCM, Quick Changing Machine)과 급속
충전 지원 차량(EB Care) ·······532
<그림4-7> Quick Changing Machine의 개념도 ······533
<그림4-8> Quick Top Pick-up(QTP)의 구조도534
<그림4-9> QTP의 동작 ···································
<그림4-10> QTP E-Bus System Block Diagram ······ 536
<그림4-11> ZAFC[아연 공기 연료 전지]의 개념 및 구조544
<그림4-12> EleCo의 외형과 구조도 ···································
<그림4-13> 엘지엠 고속 어선 배터리 구동 시스템 모습549
<그림4-14> 파워프라자의 다마스 개조 현황
<그림4-15> 파워프라자의 개조 경상용차 피스554
<그림4-16> AC Propulsion의 tzeroTM Technology ······· 566
<그림4-17> AC Propulsion의 drive systems ····································
<그림4-18> Copper Rotor Motor의 외관568
<그림4-19> AC-75 Torque & Power versus Speed568
<그림4-20> AC 150 Gen 2 Recharge Efficiency
<그림4-21> AC-150 Gen 3 System 구성도572
<그림4-22> AMP의 Repower Program 개념도578
<그림4-23> 에노바의 Post-Transmission Parallel Hybrid용 drive
system architecture
<그림4-24> 에노바의 Pre-Transmission Parallel Hybrid용 drive
system architecture
<그림4-25> 에노바의 Series Hybrid용 drive system architecture 589
<그림4-26> 에노바의 All-Electric Drive System590
<그림4-27> 에노바와 FCCC가 공동 개발한 상용 전기차 VAN 섀시 592
<그림4-28> BusCon 2013에 전시된 Phoenix의 14-passenger Phoenix
All-Electric shuttle
<그림4-29> 2013년형 'Model S'
<그림4-30> 'Model X'의 구조도
<그림4-31> Dual Motor All Wheel Drive 방식의 Model X ······ 600

<그림4-32>	PVI의 Electric Driveline-L	610
<그림4-33>	PVI의 Electric Driveline-XL ······	610
<그림4-34>	PVI의 Electric Driveline-XXL ······	611
<그림4-35>	PVI의 electronic command and control unit (BBX) ···································	611
<그림4-36>	PVI의 Energy on board/Battery 설치예	615
<그림4-37>	SPIRRA ·····	618
<그림4-38>	THINK City electric car.	619
<그림4-39>	Th!nk City ·····	628
<그림4-40>	SIM Drive System의 적용	631
<그림4-41>	Sim Drive의 Citroen DS3 Electrum의 구조도	634