목차

I. ESS(에너지저장시스템) 개황 및 비즈니스 모델 분석 31
1. ESS(에너지저장시스템) 개요와 핵심 기술
1-1. 개념 및 용도
1-2. ESS 도입의 필요성
1-3. 에너지저장 기술의 종류
1) 양수 저장기술(PHS)37
2) 압축공기 저장기술(CAES)38
3) 배터리 에너지 저장시스템(BESS)38
4) 흐름전지 에너지 저장시스템(FBESS)40
5) 수소기반 에너지 저장시스템(HESS) 40
6) 플라이 휠 에너지 저장시스템(FESS)41
7) 초전도 자기 에너지 저장시스템(SMES)41
8) 슈퍼 축전기 에너지 저장시스템(SCESS)41
2. 주요 ESS 융복합 유형별 비즈니스 모델 분석42
2-1. 도시 개발형 비즈니스 모델과 대표 사례43
1) 중국 차오페이디안(Caofeidian, 曹妃甸) ····································
(1) 개요
(2) 목표
(3) 주요 내용
(4) 참여기관 및 추진구조45
2) 중국 신광주 지식성45
(1) 개요
(2) 목표

(3) 주요 내용	
(4) 참여기관 및 추진구조	
3) 스웨덴 하마비 에코 시티	
(1) 개요	
(2) 주요 성과	
2-2. 스마트그리드형 비즈니스 모델과 대표 사례	
1) Royal Seaport Urban Smart Grid	
(1) 개요	
(2) 주요 내용	
(3) 목표	
(4) 연구과제별 참여 업체	
2) Gotland Smart Grid	
(1) 개요	
(2) 주요 내용	
(3) 목표	
(4) 연혁	
3) SmartCity Malta Project	
(1) 프로젝트 개요	
(2) 목표	
(3) 주요 내용	
(4) 프로젝트 구조	
2-3. 신재생에너지 융합형 비즈니스 모델과 대표 사례	
1) Arizona Public Service Community Power Project	
(1) 개요	······ 51
(2) 목표 및 결과	
(3) 주요 내용	52
(4) 참여기관 및 추진구조	52
2) 홋카이도 풍력 단지	······ 52
3) Iceland 지열 발전 프로젝트	
(1) 개요	
(2) 목표와 진행사항	
(3) 주요 내용	
(4) 참여기관 및 추진구조	

3) Sol-ion 프로젝트	
4) 멕시코 San Juanico 지역 ······	
(1) 개요	
(2) 주요 내용	
5) 사모아 아폴리마 섬 (Apolima Island)	
(1) 개요	
(2) 주요 내용	
2-4. 차세대 교통 시스템형 비즈니스 모델과 대표 사례	
1) Copenhagen Climate Plan 프로젝트 ·····	
(1) 개요	
(2) 목표	
(3) 주요 내용	
(4) 참여기관 및 추진구조	
(5) 최근 상황	
2-5. 신규 기술 실증형 비즈니스 모델과 대표 사례	
1) Bornholm 실증 프로젝트 ·····	
(1) 개요	61
(2) 목표	
(3) 주요 내용	
(4) 참여기관 및 추진구조	
2) Rockefeller Center Project ·····	
(1) 개요	
(2) 목표	
(3) 주요 내용	
(4) 구조	
3) Jacksonville City Schools Project	
(1) 개요	
(2) 목표	
(3) 주요 내용	

Ⅱ. 글로벌 ESS(에너지저장시스템)과 연관 시장전망 및 정책동향…69

1.	글로	벌 ESS	시장	및 7	정책	동향	•••••	•••••	•••••	••••••	
	1-1.	글로벌	전력 /	시장	동향	•••••		•••••	•••••	••••••	

1) 전세계 전력 현황	
(1) 전력 소비 트랜드	
2) 주요국별 전력시장 현황	
(1) 미국	
(2) 영국	
(3) 러시아	
(4) 중국	
(5) 일본	
(6) 사우디아라비아	
(7) 쿠웨이트	······ 92
(8) 이집트	
1-2. 주요국별 ESS 시장 및 정책 동향	
1) ESS 시장 활성화 요소	
(1) ESS와 신재생에너지 융합	
(2) 민간 ESS 프로젝트 확대	
(3) 신규 비즈니스 모델 등장	
(4) 각국 정책 지원 확대	
2) 글로벌 에너지저장시스템(ESS) 시장규모 및 전망	
(1) 에너지저장시스템(ESS) 시장 현황	
(2) 에너지저장시스템용 리튬이차전지 시장 현황	
(3) 가격 전망	
3) 애플리케이션별 시장 트랜드	
(1) 자동차용 시장	
(2) 고정형 시장	······ 112
(2) 휴대 디바이스용	
4) 주요 국가별 시장 현황 및 정책 동향	
(1) 미국	
(2) 일본	
(3) 중국	
1-3. 국내 시장 및 정책 동향	
1) 국내 시장동향 및 전망	
(1) 시장 규모	
(2) 분야별 서플라이 체인	······ 142

(3) 분야별 시장 전망
2) 시장 활성화 정책 동향
(1) 미래성장동력 플래그쉽 프로젝트 추진
(2) 에너지 수요관리 新시장 창출방안
(3) 국내 ESS 육성 정책160
(4) 전력저장장치(ESS) 고효율 인증제도 도입
2. 글로벌 ESS의 연관시장 동향과 전망
2-1. 스마트그리드 시장전망과 추진 동향
1) 국내외 스마트그리드 시장동향 및 전망
(1) 글로벌 시장
(2) 국내 시장
2) 국내외 스마트그리드 추진동향
(1) 주요 국가별 추진 동향
(2) 국내 추진 동향 (제주도 중심)
2-2. 이차전지 산업 현황과 시장 전망
1) 리튬이온전지 산업 현황
 (1) 韓 · 日 · 中 경쟁 구도 ···································
(2) 적용 범위 확대
(3) 전기차용 리튬전지 시장 확대
2) 글로벌 대형 이차전지 시장동향과 전망
(1) 전력저장시스템용 이차전지
(2) 아이들링 스톱 자동차, 마이크로 하이브리드 자동차용 이차전지 ·218
(3) 마이크로 전기자동차용 이차전지
3) 리튬이차전지, 에너지저장장치로 주목
4) 리튬이온전지 소재시장 동향
(1) 전지소재 시장동향
(2) 양극활물질
(3) 음극활물질 ······227
(4) 분리막
(5) 전해액
5) 소재별 수요 분석
(1) 양극재
(2) 음극재

(3) 분리막
(4) 전해액
6) 해외 이차전지 관련 주요 기업 및 기관
(1) 총괄
(2) 미국 분포
(3) 중국 분포
(4) 일본 분포

Ⅲ. ESS(에너지저장시스템) 관련 핵심기술・표준화・특허 동향 ……241

(3) 연구과제의 주요내용	····· 250
(4) 지원 요건	····· 251
6) 제조산업 에너지 절감을 위한 고효율 확장형 FEMS 개발	····· 251
(1) 요소기술	····· 251
(2) 연구과제의 목표	····· 252
(3) 연구과제의 주요내용	····· 253
(4) 지원 요건	····· 254
7) 해외수출용 중소형 분산 에너지저장장치 및 통합관리 시스템 개빌	<u>†</u> … 255
(1) 요소기술	····· 255
(2) 연구과제의 목표	····· 255
(3) 연구과제의 주요내용	····· 256
(4) 지원 요건	····· 257
8) 산업용 수용가 수요관리 ESS 구축 및 운용 실증	····· 257
(1) 요소기술	····· 257
(2) 연구과제의 목표	····· 257
(3) 연구과제의 주요내용	····· 259
(4) 지원 요건	····· 259
9) 에너지다소비 건물용 RFB 시스템 개발 및 실증	····· 259
(1) 요소기술	····· 259
(2) 연구과제의 목표	····· 259
(3) 연구과제의 주요내용	····· 260
(4) 지원 요건	····· 261
10) 모듈형 복합 분산전원시스템 개발 및 실증	····· 261
(1) 요소기술	····· 261
(2) 연구과제의 목표	····· 261
(3) 연구과제의 주요내용	····· 262
(4) 지원 요건	····· 262
11) 폐실리콘 등을 이용한 ESS용 LIB의 저가 금속/탄소 융합 전구체 및 음극소재 기	1발 263
(1) 기술개요	····· 263
(2) 지원조건	····· 264
12) ESS용 LIB 적용을 위한 고강도 및 고절연성 Al 포장재 개발	····· 264
(1) 기술개요	····· 264
(2) 지원조건	····· 266

13) 전력저장용 저온형 나트륨계 전지 기술(저온형 나트륨계 이차전지) 26	36
(1) 연구과제 목표	36
(2) 연구과제의 주요 내용	37
(3) 지원조건	58
1-2. ESS 실증 연구사업	3 9
1) 전력피크 대응을 위한 ESS 실증연구 사업	<u> 5</u> 9
(1) 요소기술	<u> 5</u> 9
(2) 연구과제의 목표	<u> 5</u> 9
(3) 연구과제의 주요내용	71
(4) 지원 요건	77
1-3. 기타 ESS 관련 연구개발 테마	78
1) 저가이면서 안정성이 우수한 나트륨 이차전지용 소재	78
(1) 개요 및 필요성	78
(2) 연구목표	78
(3) 지원기간, 예산	79
2) 리튬이온 배터리 에너지저장 시스템 평가·인증체계 구축	79
(1) 개요 및 필요성27	79
(2) 사업목표	30
(3) 사업내용 (Spec. 포함) ······28	30
(4) 사업기간	31
3) 리튬이차전지 Seal Tape용 고경도(80D) 필름 기술 개발	31
(1) 개요	31
(2) 필요성	31
(3) 개발목표	31
(4) 개발내용(Spec. 포함) ······28	31
(5) 주요결과물	32
4) 잔여용량 확인이 가능한 고용량 리튬-염화티오닐 전지 기술 개발 28	32
(1) 개요	32
(2) 필요성	32
(3) 개발목표	32
(4) 개발내용(Spec. 포함) ······28	32
(5) 주요결과물	33
5) 6kW급 태양광 발전과 BESS를 복합 연동한 계통 연계 ESS용 인버터 기술개발 … 28	33

(1) 개요	····· 283
(2) 필요성	····· 283
(3) 개발목표	····· 283
(4) 개발내용(Spec. 포함)	····· 283
(5) 주요결과물	····· 284
6) ESS용 대용량 이차전지 멤브레인 기술 개발	····· 284
(1) 개요	····· 284
(2) 필요성	····· 284
(3) 개발목표	····· 285
(4) 개발내용(Spec. 포함)	····· 285
(5) 주요결과물	····· 285
7) 전기에너지 저장 및 전기자동차용 전기이중층 커패시터 제조 기술 개발	ŀ · · 285
(1) 개요	····· 285
(2) 필요성	····· 285
(3) 개발목표	····· 286
(4) 개발내용 (Spec. 포함)	····· 286
(5) 주요결과물	····· 286
8) 비탄소계 리튬이차전지 음극기술 개발	····· 286
(1) 개요	····· 286
(2) 필요성	····· 287
(3) 개발목표	····· 287
(4) 개발내용(Spec. 포함)	····· 287
(5) 주요결과물	····· 287
9) 중대형 이차전지 전극 레이저 Cutting/Welding 모듈 개발	····· 288
(1) 개요	····· 288
(2) 필요성	····· 288
(3) 개발목표	····· 288
(4) 개발내용(Spec. 포함)	····· 288
(5) 주요결과물	····· 289
10) 수계 레독스 흐름전지용 표면적 0.4 m2/g 이상의 카본펠트 전극소재 기술개	발·289
(1) 개요	····· 289
(2) 필요성	····· 289
(3) 개발목표	····· 289

(4) 개발내용 (Spec. 포함) ······289
(5) 주요결과물
11) 리튬이차전지용 코어/ 셀 구조를 갖는 1,200mAh/g급 용량의 실리콘계 음극소재 기술개발 290
(1) 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(2) 필요성
(3) 개발목표
(4) 개발내용 (Spec. 포함) ······290
(5) 주요결과물
12) 비가역용량 260 mAh/g 이상의 양극 첨가제 기술 개발
(1) 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(2) 필요성
(3) 개발목표
(4) 개발내용(Spec. 포함) ···································
(5) 주요결과물
13) 극한온도 성능이 우수한 고출력 VSS(Voltage Stabilizer System) 개발 292
(1) 필요성
(2) 연구목표
(3) 지원기간, 예산
14) 차량 연비개선을 위한 시동 및 출력보조용 48V 리튬이차전지 시스템 기술개발 295
(1) 개요 및 필요성
(2) 연구목표
(3) 지원기간, 예산
15) 리튬이치전지 분리막 신화물 코팅(두께k6µm)을 위한 수계 바인더 소재 및 코팅기술 개발·296
(1) 개요 및 필요성
(2) 연구목표
(3) 지원기간, 예산
16) 리튬이차전지용 고용량 실리콘 음극소재(중간재) 기술개발 298
(1) 개요 및 필요성
(2) 연구목표
(3) 지원기간, 예산
17) 에너지 저장장치 표준화 기반 및 지원체계 구축 300
(1) 최종목표
(2) 사업내용

305
309
309

	(3) 주요업체별 출원동향
	(4) 출원인별 출원동향
	6) 슈퍼커패시터
	(1) 연도별 출원동향
	(2) 국가별 출원동향
	(3) 주요업체별 출원동향
	(4) 출원인별 출원동향
	7) 압축공기저장시스템(CAES)
	(1) 연도별 출원동향
	(2) 국가별 출원동향
	(3) 주요업체별 출원동향
	(4) 출원인별 출원동향
	8) 플라이휠
	(1) 연도별 출원동향
	(2) 국가별 출원동향
	(3) 주요업체별 출원동향
	(4) 출원인별 출원동향
3	-2. 국내 리튬 이차 전지 특허 동향

1. 국내 주요 사업 참여업체와 기관 동향
1-1. 참여 업체
1) 벡셀
(1) 에너지저장시스템(ESS) 전략
2) 삼성SDI340
(1) 에너지저장시스템(ESS) 전략
(2) 해외 시장 공략
(3) 생산 라인 확대
3) 에스씨지솔루션즈
(1) 리튬배터리 시장 공략
4) 에이치투
(1) 레독스 플로우 배터리 ESS 상용화
5) SK이노베이션 ····································

(1) 배터리 사업에 총력	· 351
(2) 맥스웰 테크놀로지와 MOU	• 352
6) LS산전	· 353
(1) 에너지저장시스템(ESS) 전략	· 353
(2) 해외 시장 공략	· 354
7) LG화학 ·····	· 355
(1) 에너지저장시스템(ESS) 전략	· 355
(2) 해외 시장 공략	· 357
(3) 자체 제조라인에 ESS 구축	· 359
8) 이화하이테크	· 360
(1) 리튬 폴리머 ESS 시판	· 360
9) 유진에너팜	· 361
(1) ESS 사업 진출 ······	· 361
(2) ESS 생산라인 구축	· 362
10) 일진머티리얼즈	· 363
(1) 전기차용 전지 매출 확대	· 364
11) 주하	· 365
(1) ESS 일본 수출	· 365
12) KT	· 366
(1) 학교용 '신재생+ESS' 사업 추진	· 366
(2) 스마트그리드 확산 전략	· 367
13) 코캄	· 368
(1) 국내 ESS 시장 진출 본격화	· 368
(2) 해외 ESS 시장 확대	· 368
14) 포스코ICT	· 370
(1) 에너지효율화 전략	· 370
(2) 해외 시장 공략	· 371
(3) 국내 사업	• 372
(4) ESS 시험센터 운영	· 373
15) 하이에너지	· 374
(1) 인도서 60M₩규모 풍력 계약	· 374
16) 한국전력공사	· 375
(1) 에너지저장시스템 설비 투자	· 376

17) 효성	377
(1) 에너지저장시스템(ESS) 전략	377
(2) 국내 사업	379
1-2. 주요 기관 및 단체	380
1) 스마트그리드사업단	380
(1) 원격검침인프라(AMI)와 에너지저장장치(ESS) 구축	380
2) 에너지관리공단	381
(1) 수요관리 중심으로 조직 개편	381
(2) 신재생에너지 융·복합지원 사업	382
(3) 한국전지산업협회와 ESS 업무협약	383
(4) LG화학과 업무협약	384
(5) 민-관 협력사업 모델 확산	384
3) 한국전지산업협회	385
(1) ESS 민간 시장 활성화	385
2. 해외 주요 사업 참여업체 동향	387
2-1. 미국	387
1) Ambri (舊, Liquid Metal Battery) ····································	387
(1) 일반현황	387
(2) 제품 특징	387
(3) 기술 특성	387
2) Aquion Energy	389
(1) 일반현황	389
(2) 기술 특성	389
(3) 제품	390
3) A123 System	390
(1) 일반현황	390
(2) 경영의 악화	390
(3) 판매	391
(4) 향후 전략	391
4) EnerVault ····································	391
(1) 일반현황	391
(2) 제품 기술적 특징	392
(3) 실증 실험	392

5) Eos Energy Storage	
(1) 일반현황	
(2) 제품	
(3) 기술 특성	
(4) 실증 실험	
6) GE	
(1) 개요	
(2) 사업 전략 방향	
(3) 비즈니스 영역 및 주요 사업	
(4) Profit System	
(5) 사업성과 및 전망	
7) Johnson Controls	
(1) 일반현황	
(2) 자동차용 배터리	
(3) 납축전지	
8) Pellion Technologies, Inc.	
(1) 일반현황	
(2) 제품 및 기술적 특징	
9) Prieto Battery	
(1) 일반현황	
(2) 제품의 기술적 특징	
10) Primus Power ·····	
(1) 일반현황	
(2) 제품의 기술적 특징	
(3) 발전 시설의 건설	
11) Viridity Energy	
(1) 일반현황	
(2) 강점	
2-2. 일본	······ 402
1) GS유아사 계열	
(1) GS YUASA Group	
(2) 리튬 에너지 재팬(LEJ)	
(3) 블루 에너지	

2) PANASONIC Group ·····	
(1) 프라임어스 EV에너지 주식회사	
(2) 파나소닉/에너지사(舊, 마쓰시타 전지 공업)	
3) NEC Group ·····	
(1) Automotive Energy Supply	
(2) NEC Energy Device	
(3) NEC(주) ······	
4) HITACHI Group ·····	
(1) 히타치 제작소	
(2) 대형 축전지 제품	
(3) 히타치 오토모티브 시스템즈	
(4) 히타치 비클 에너지	
(5) 신코베전기(주)	
5) Mitsubishi Heavy Industrial	
(1) 일반 현황	
(2) 제품	
(3) 기술 특성	
6) Toshiba ·····	
(1) 일반 현황	
(2) 연혁	
(3) 최근동향	
(4) 제품	
(5) 주요 고객	
(6) 기술적 특징	
7) Sumitomo Electric Industries	
(1) 일반현황	
(2) 플로우 전지	
(3) 나트륨 이온 전지	
8) TDK/Hongkong Amplex Technologies(ATL)	
(1) 일반현황	
(2) 연혁	
(3) 주력 시장	
(4) 용도	

(5) 제품
(6) 정극 재료
9) JM Energy 420
(1) 일반현황
(2) 제품
10) ELIIY Power
(1) 일반현황
(2) 제품
(3) 기술 특성
11) The Furukawa Battery
(1) 일반 현황
(2) 최근 동향
(3) 우주용 리튬이온 전지 422
12) SONY
(1) 일반현황
(2) 용도
(3) 연혁
(4) 최근 동향
(5) 향후 전략
(6) 기술 특성
(7) 배터리 리콜
13) FDK
(1) 일반현황
(2) 연혁
(3) 제품
14) NIPPON CHEMI-CON ·······425
(1) 일반현황
(2) 주요 고객사
(3) 제품
(4) 기술 특성
15) Itochu ······ 426
(1) 일반 현황
(2) 최근 동향

16) Ube Industries ······427
(1) 일반 현황
(2) 최근 동향
17) 스미토모 금속 광산
(1) 일반현황
(2) 최근동향
2-3. 중국
1) BYD
(1) 일반 현황
(2) 기술 현황
2) 中國天津力神電池 Tianjin Lishen429
(1) 일반 현황429
(2) 주요 고객사

표목차

T	ESS(에너지저장시스텐)	개화 민	비즈니스	모델 분석	
ь.				U	

<표 I −1>	주요 에너지저장시스템별 작동 원리 및 특징	• 33
<표 I −2>	에너지저장시스템 종류별 특성 비교 (규모 및 시간 분류)	· 34
<표 I -3>	각종 에너지 저장시스템의 특성 비교	· 37

Ⅱ. 글로벌 ESS(에너지저장시스템)과 연관 시장전망 및 정책동향…69

<표Ⅱ-1> 주요국 연도별 전력소비량
<표Ⅱ-2> 지역별 발전 비중
<표Ⅱ-3> 미국 발전 플랜트 종류별 총 전기 발전량
<표Ⅱ-4> 주요 전력 산업 관련 정부 기관
<표Ⅱ-5> 발전 회사 및 송배전 회사 소유 및 서비스 형태
<표Ⅱ-6> 영국의 발전량 GWh, 송전단
<표Ⅱ-7> 전력산업 정책기관
<표Ⅱ-8> 2000-2012년 발전량 추이
<표Ⅱ-9> 러시아 전력산업 부문별 회사80
<표Ⅱ-10> 러시아 대비 주요국의 에너지 효율성81
<표Ⅱ-11> 중국 전력 발전용량 및 발전량, 전력건설투자액82
<표Ⅱ-12> 중국의 발전량 비중82
<표Ⅱ-13> 주요 전력회사별 발전량83
<표Ⅱ-14> 주요 설비 생산량 및 비중 현황84
<표Ⅱ-15> 일본 발수전 전력실적86
<표Ⅱ-16> 발수전전력량의 전년대비증가율 추이86

<표Ⅱ-17>	일본 10대 전력회사 수요 속보
<표Ⅱ-18>	발전설비용량·발전전력량, 판매전력량 추이
<표Ⅱ-19>	사우디아라비아 전력플랜트 발주 규모
<표Ⅱ-20>	사우디아라비아 기계류/플랜트기자재 수입현황
<표Ⅱ-21>	對한국 사우디 중전기기 수입현황
<표Ⅱ-22>	쿠웨이트 전력생산 현황
<표Ⅱ-23>	쿠웨이트 1인당 전력 소비량
<표Ⅱ-24>	쿠웨이트 장기 전력 수급 전망
<표Ⅱ-25>	이집트 전력 소비 추이 및 전망95
<표Ⅱ-26>	이집트 발전 설비별 전력생산 능력96
<표Ⅱ-27>	이집트 발전 설비별 발전량 추이
<표Ⅱ-28>	이집트 발전회사 현황
<표Ⅱ-29>	The Generation Expansion Plan During The period
<표Ⅱ-30>	The Generation Expansion plan During The period
<표Ⅱ-31>	에너지저장 유형의 개요 및 특성
<표Ⅱ-32>	주요 에너지저장 기술의 성능 비교
<표Ⅱ-33>	2014년 글로벌 이차전지 기업별 ESS 시장 점유율
<표Ⅱ-34>	에너지저장 기술별 가격
<표Ⅱ-35>	저장방식에 따른 에너지 저장 수용량
<표Ⅱ-36>	미국 에너지 저장시장(HS 8507 Storage Batteries) 수입동향 120
<표Ⅱ-37>	미국의 ESS 관련 정책 및 보조금
<표Ⅱ-38>	Ancillary Service의 분류
<표Ⅱ-39>	고정형 축전지(ESS) 시장 전망
<표Ⅱ-40>	에너지저장기술 시장규모
<표Ⅱ-41>	리튬이온전지 국내 가치사슬
<표Ⅱ-42>	레독스흐름전지 국내 가치사슬
<표Ⅱ-43>	NaS 전지 국내 가치사슬
<표Ⅱ-44>	슈퍼 커패시터 국내 가치사슬
<표Ⅱ-45>	CAES 국내 가치사슬
<표Ⅱ-46>	플라이휠 국내 가치사슬
<표Ⅱ-47>	ESS 부문 미래성장동력 플래그쉽 프로젝트 요약표
<표Ⅱ-48>	에너지절약전문기업(ESCO) 지원 현황
<표Ⅱ-49>	에너지 저장 기술 R&D 투자 현황

<표Ⅱ-50>	연도별 투자 목표
<표Ⅱ-51>	주요 기술 개발 분야
<표Ⅱ-52>	주체별 역할
<표Ⅱ-53>	인증 기술기준 ······164
<표Ⅱ-54>	에너지절감효과
<표Ⅱ-55>	인증 기술기준 ······165
<표Ⅱ-56>	에너지절감효과
<표Ⅱ-57>	인증 기술기준 ······166
<표Ⅱ-58>	에너지절감효과
<표Ⅱ-59>	인증 기술기준 ······167
<弫Ⅱ-60>	에너지절감효과
<표Ⅱ-61>	무정전전원장치(UPS)의 인증 적용범위 확대167
<표Ⅱ-62>	무정전전원장치(UPS)의 인증기술기준 강화
<표Ⅱ-63>	에너지절감효과
<표Ⅱ-64>	유럽 국가별 스마트미터링 도입 계획
<표Ⅱ-65>	제주실증단지 구축개요
<표Ⅱ-66>	스마트그리드 실증단지 주요 구성요소
<표Ⅱ-67>	분야별 컨소시엄 참여기업
<표Ⅱ-68>	실증사업에서 발굴된 사업모델200
<표Ⅱ-69>	안전사고에 의한 리튬이온전지 리콜 사례
<표Ⅱ-70>	전지 업체-완성차업체 협력현황
<弫Ⅱ-71>	리튬이온전지 산업의 주요연혁214
<표Ⅱ-72>	전력저장시스템용 이차전지의 세계 시장 전망
<표Ⅱ-73>	리튬전지 소재업체 및 점유율 현황
<표Ⅱ-74>	국내 양극활물질 제조사 현황
<표Ⅱ-75>	주요 제조사별 분리막 공급현황
<표Ⅱ-76>	주요 제조사별 전해액 공급현황
<표Ⅱ-77>	미국,중국,일본,EU 지역의 이차전지 관련 주요 기업 및 기관 리스트… 233

Ⅳ. 국내외 -	주요 참여업체의 E	ESS 관련 비즈니	스 전략	339
<표Ⅳ-1> 일	진머티리얼즈 분기별	실적 전망(IFRS 7	개별기준)	363
<표IV-2> 연	도별 투자계획			376

그림목차

Т	FCC(에너지저자시스테)	개하	цl	비ス니스	다 데	부서		21	Ē
1.	TOOL에 다시 제상시 드 밖/	/11 - X	듯	비스니스	도댈	十二	•••••	51	1

<그림 I -1>	에너지저장시스템 개념도	31
<그림 I -2>	에너지저장시스템 필요성	36
<그림 I -3>	압축공기 에너지 저장시스템 개요도	38
<그림 I -4>	배터리 에너지 저장시스템 개요도	39
<그림 I -5>	슈퍼 축전기 에너지 저장시스템 구조도	41

Ⅱ. 글로벌 ESS(에너지저장시스템)과 연관 시장전망 및 정책동향…69

<그림Ⅱ-1> 연료별 전기 발전량 추가 추세(2012)
<그림Ⅱ-2> 미국 전력수요 성장 추이(1950-2040)
<그림Ⅱ-3> 영국의 전력공급예비율 추이
<그림Ⅱ-4> 영국 전력산업 구조
<그림Ⅱ-5> 러시아 전력산업 전체 구조80
<그림Ⅱ-6> 전력회사의 구조83
<그림Ⅱ-7> 일본 10개 전기사업자별 관할지89
<그림Ⅱ-8> ESS 구성도
<그림Ⅱ-9> 에너지저장시스템 시장현황 및 전망(단위: \$bn)105
<그림Ⅱ-10> 에너지저장용 리튬이차전지 시장규모 및 전망(단위: \$bn) 107
<그림Ⅱ-11> 에너지저장용 리튬이차전지 생산규모별 가격하락 곡선110
<그림Ⅱ-12> 에너지저장 기술별 가격 전망
<그림Ⅱ-13> A123의 컨테이너형 리튬이온 이차전지 ~
<그림Ⅱ-14> AEP사의 송전망에 설치된 일본 가이시(NGK)사의 NaS 전지 ~ ·· 115

<그림Ⅱ-15>	고정형 저장 장치의 비교	116
<그림Ⅱ-16>	AES Energy Storage 社의 리튬이온 저장시스템 단지	119
<그림Ⅱ-17>	홋카이도전력 실증시험	136
<그림Ⅱ-18>	중국 에너지 저장 시설 종합 설비 용량(MW)	138
<그림Ⅱ-19>	에너지저장기술 국내 시장규모 전망	140
<그림Ⅱ-20>	애플리케이션별 국내 시장규모 전망	146
<그림Ⅱ-21>	기술 분류별 국내 시장규모 전망	147
<그림Ⅱ-22>	주파수조정용(FR) ESS 실증 사업 모델	149
<그림Ⅱ-23>	수용반응 및 비상발전용 ESS 실증 사업 모델	151
<그림Ⅱ-24>	ESS 신재생에너지 연계용(RI) 실증 사업 모델	152
<그림Ⅱ-25>	지역별 스마트그리드 투자 규모 (2010~2018, \$10억)	171
<그림Ⅱ-26>	아시아-오세아니아 스마트그리드 투자 (2008~2018, \$10억)	172
<그림Ⅱ-27>	부문별 스마트그리드 투자 규모 (2010~2018, \$10억)	173
<그림Ⅱ-28>	세계 누적 스마트미터 보급대수 및 연간 보급대수	174
<그림Ⅱ-29>	스마트그리드 부문별 시장규모 (2012년 기준)	175
<그림Ⅱ-30>	국내 스마트그리드 시장규모 전망	175
<그림Ⅱ-31>	애플리케이션별 국내 스마트그리드 시장규모 전망	177
<그림Ⅱ-32>	미국 부문별 스마트그리드 투자 규모	178
<그림Ⅱ-33>	미국의 정전 사례 중 기상과 관련한 건수	183
<그림Ⅱ-34>	미국 군부대 마이크로그리드 용량(MW) 전망(2012~2018년) ··	184
<그림Ⅱ-35>	유럽 국가별 스마트 미터 설치 현황 및 전망	186
<그림Ⅱ-36>	유럽 국가별 스마트미터 보급 추진 현황	188
<그림Ⅱ-37>	유럽 국가별 스마트그리드 도입 전망 (2010~2017)	188
<그림Ⅱ-38>	도요타에서 출시한 저속전기 컨셉카 Smart INSECT	189
<그림Ⅱ-39>	일본 스마트시티 추진현황	190
<그림Ⅱ-40>	중국 State Grid 스마트미터 입찰 (2009~2012, 백만대)	192
<그림Ⅱ-41>	중국 배전자동화 프로젝트 (2009~2012)	194
<그림Ⅱ-42>	중국 최대전력수요 추이(2005~2011, GW)	195
<그림Ⅱ-43>	중국 전력시장 개혁 방향(미확정, 검토 중)	196
<그림Ⅱ-44>	S-ES 사업모델 ·····	203
<그림Ⅱ-45>	S-PTS 사업모델 ······	204
<그림Ⅱ-46>	S-IC 사업모델	204
<그림Ⅱ-47>	S-City 사업모델 ······	205

<그림Ⅱ-48>	제주도 구좌읍 D/L 별 시간대 부하(kW)
<그림Ⅱ-49>	주요 제조사 출하량 추이
<그림Ⅱ-50>	주요 제조사 이익률 추이
<그림Ⅱ-51>	세계 대형 이차전지의 시장 전망
<그림Ⅱ-52>	아이들링 스톱 자동차, 마이크로 하이브리드 자동차용 이차전지 ··219
<그림Ⅱ-53>	마이크로 전기자동차용 이차전지 세계 시장
<그림Ⅱ-54>	ESS의 전력계통 적용 시 기대 효과
<그림Ⅱ-55>	ESS 기술 비교 ······ 222
<그림Ⅱ-56>	ESS용 이차전지
<그림Ⅱ-57>	에너지저장용 리튬이차전지 시장규모 및 전망
<그림Ⅱ-58>	양극활물질 공급현황 및 전망
<그림Ⅱ-59>	음극활물질 생산현황 및 주요 업체별 시장점유율
<그림Ⅱ-60>	음극활물질 소재별 시장점유율
<그림Ⅱ-61>	미국내 이차전지 산업 및 R&D 지역 클러스터
<그림Ⅱ-62>	중국내 전지 기업의 지역별 분포
<그림Ⅱ-63>	일본 간사이 지역에 밀집된 전지 업체 클러스터
<그림Ⅱ-64>	일본 간사이 지역의 전지관련 연구기관 클러스터

Ⅲ. ESS(에너지저장시스템) 관련 핵심기술・표준화・특허 동향 ……241

<그림Ⅲ-1>	리튬이온전지의 연도별 출원동향	311
<그림Ⅲ-2>	리튬이온전지 국가별 출원동향	311
<그림Ⅲ-3>	레독스흐름전지의 연도별 출원동향	314
<그림Ⅲ-4>	레독스흐름전지의 국가별 출원동향	315
<그림Ⅲ-5>	NaS전지의 연도별 출원동향	317
<그림Ⅲ-6>	NaS전지의 국가별 출원동향	318
<그림Ⅲ-7>	메탈에어전지의 연도별 출원동향	320
<그림Ⅲ-8>	메탈에어전지의 국가별 출원동향	321
<그림Ⅲ-9>	슈퍼커패시터의 연도별 출원동향	323
<그림Ⅲ-10>	› 슈퍼커패시터의 국가별 출원동향 ······	324
<그림Ⅲ-11>	> CAES의 연도별 출원동향	326
<그림Ⅲ-12>	> CAES의 국가별 출원동향	327
<그림Ⅲ-13>	> 플라이휠의 연도별 출원동향	330
<그림Ⅲ-14>	> 플라이휠의 국가별 출원동향	330

<그림Ⅲ-15> 리튬 2차전지 관련 10년간 특허출원동향(2003년~2012년) …… 333 <그림Ⅲ-16> 리튬 2차전지 관련 10년간 국내외 출원 비중 …… 334 <그림Ⅲ-17> 리튬 2차전지의 반응 개요 및 구성(원통형전지) …… 334 <그림Ⅲ-18> 주요 기술별 출원 동향 …… 335 <그림Ⅲ-19> 출원 Top 5와 중소 소재업체(23개 업체) 출원율 비교 …… 335

Ⅳ. 국내외 주요 참여업체의 ESS 관련 비즈니스 전략 ……………… 339 <그림Ⅳ-7> 코캄이 미국시장에 공급한 1MW급 ESS 설비 ………………………… 370 <그림Ⅳ-8> 제주도 조천 변전소의 1MWh급 리튬이온 ESS 내부 모습 …… 375 <그림Ⅳ-11> Ambri사에서 이용되는 전극 재료의 구조의 변화 ……………… 388 <그림Ⅳ-12> 수용성 하이브리드 이온 방식의 고정용 배터리 셀 …………… 389 <그림Ⅳ-13> 왼쪽보다 기본 셀, 스택, 모듈, 벌크 시스템 ………………………… 390 <그림Ⅳ-14> A123의 리튬이온 이차전지가 탑 등장된 Fiskar의 전기 자동차 …… 391 <그림Ⅳ-15> A123의 고정용 리튬 이온 이차 전지 컨테이너 ……………… 391 <그림N-16> EnerVault社가 DoE의 250kW의 플로우 배터리 392 <그림Ⅳ-18> 나노 와이어의 양극(음극)을 전해질이 에워싼 도면 …………… 398 <그림 N-19> Primus Power社의 플로우 배터리를 컨테이너 내에 설치한 사례·400 <그림Ⅳ-21> 블루 에너지의 리튬이온 2차전지 셀 ………………………… 404 <그림Ⅳ-22> 파나소닉의 16850리튬 이온 2차전지 셀 ………………………… 407 <그림Ⅳ-23> 파나소닉의 니켈수소 2차전지 셀 …………………………… 408 <그림Ⅳ-24> 적층형 리튬 이온 2차 전지 ………………………………………………………… 410