

│. 인공지능(AI) 기술, 시장 개요와 향후 전망 ······43

1. 인공지능 기술 개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1-1. 인공지능 기술의 개념	
1) 인공지능 기술의 개요	
(1) 인공지능 정의	
(2) 인공지능 기술	
2) 인공지능 연구 동향	
(1) 인공지능 연구에 활용된 핵심 기술 및 이론	
① 기계 학습(Machine Learning)	
② 전문가 시스템(Expert System)	
③ 퍼지 이론(Fuzzy Theory)	
④ 유전 알고리즘(Genetic Algorithm)	
⑤ BDI 아키텍처(BDI Architecture)	
(2) 인공지능을 진화시킨 '딥 러닝(Deep Learning)'	
(3) 글로벌 대기업들의 AI 연구 및 투자 동향	
① 구글	
② 마이크로소프트	
③ IBM	
④ 페이스북	
⑤ 아마존	
⑥ 애플	
⑦ 삼성그룹	
(4) 주요 인공지능 연구 분야	······ 72
1-2. 인공지능 기술의 역사	
1) 인공지능, 그 도전의 역사	
2) 인공지능의 발전 과정	
3) 인공지능 기술의 시기별 발전 과정	
(1) 앨런 튜링(Alan Turing)의 '튜링 모방 게임'	
(2) 인공지능의 탄생 : 1943 ~ 1956년	
(3) 인공지능 연구의 융성 : 1956 ~ 1960년	
(4) 인공지능의 침체기 : 1960년대 후반 ~ 1970년대 초반	

(5) 전문가 시스템 기술의 등장 : 1970년대 초반 ~ 1980년대 중반	··· 78
(6) 기계학습의 시작, 신경망의 재탄생 : 1980년대 중반 ~ 1980년대 후반	··· 79
(7) 지식 공학의 새로운 시대 : 1980년대 후반 ~ 현재	80
1-3. 주요 인공지능 연구 분야별 최근 연구 동향과 방향성	81
1) 유전 알고리즘 분야	81
2) 전문가 시스템 분야	··· 81
3) 음성 인식 분야	··· 82
4) 탐색 분야	··· 83
5) 이미지 인식 분야	··· 84
6) 신경망 분야	85
7) 기계 학습 분야	86
8) 감성 처리 분야	86
9) 게임 분야	··· 87
10) 자연어 처리 분야	··· 87
11) 지식 표현 분야	··· 87
12) 정보 검색 분야	··· 87
13) 자동 추론 분야	··· 87
14) 데이터 마이닝 분야	88
15) 휴먼 인터페이스 분야	88
16) 계획 분야	88
17) 멀티 에이전트 분야	88
18) 인지로봇공학 분야	
19) 컴퓨터 비전 분야	
20) 지능엔진 분야	89
21) 양자 컴퓨터 분야	89
1-4. 주요 인공지능 기술 관련 활용사례와 동향	90
1) 웹 구조 마이닝	90
2) 협업 필터링	90
3) 개인비서 서비스	91
(1) Apple의 'Siri' ·····	91
(2) Google의 'Google Now' ·····	··· 92
(3) Microsoft의 'Cortana' ·····	··· 94
(4) Facebook의 'Facebook M'	··· 96
(5) 아마존 '알렉사'	··· 97
(6) 삼성전자 'S 보이스'	99
(7) 바이두 '듀어'	99
4) 자율주행 자동차	99

(1) Google의 자율주행차 프로젝트	
(2) Apple의 타이탄 프로젝트	100
(3) 일본 자동차업체의 자율주행 자동차	101
(4) 독일 자동차업체의 자율주행 자동차	102
(5) 한국 현대·기아자동차의 자율주행 자동차	103
5) 인공지능 로봇	104
(1) 미국의 인공지능 로봇 연구	104
(2) 일본의 인공지능 로봇 연구	104
(3) 한국의 인공지능 로봇 연구	105
6) 사물인터넷(IoT)	106
(1) Apple의 사물인터넷 전략	106
(2) Google의 사물인터넷 전략	107
(3) 일본 기업의 사물인터넷 개발 전략	108
(4) 한국 기업의 사물인터넷 개발	110
2. 주요국별 인공지능 연구 및 정책 동향	113
2-1. 미국정부의 인공지능 연구・정책 동향	113
1) 인간 두뇌 분석을 통한 인공지능 원천기술 확보	113
2) 군사 분야와 인공지능 접목을 통한 상용화 추진	113
3) 활발한 산학연 연계를 통한 인공지능 R&D	114
2-2. 일본정부의 인공지능 연구·정책 동향	116
1) 정부의 정책동향	116
(1) 일본 정부의 인공지능 정책동향 핵심 시책	116
(2) 경제산업성의 신산업 구조 부회	117
(3) 정부의 인공지능 개발 강화	118
(4) 일본재흥전략의 발표 ······	119
(5) 개혁 2020 프로젝트의 인공지능 관련 정책	119
2) 지자체의 정책동향	121
(1) 기타규슈시의 인공지능 간호로봇 도입	121
(2) 기타모토시의 인공지능 사이트 네비게이터	121
(3) 인공지능 로봇 '페퍼'의 도입	······ 122
(4) 가나가와 현 자율주행 택시 도입	123
2-3. 유럽 및 중국의 인공지능 연구·정책 동향	124
1) 유럽연합(EU)의 인공지능 관련 주요 시책과 개요	····· 124
2) 중국의 인공지능 관련 주요 시책	124
이 그네 이고지는 고려 저채도하고 기수가만 도하	100
이 국내 고급시금 선난 경색금장서 기골개를 중장 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120

3-1. 한국정부의 인공지능 연구·정책 동향	126
1) 국내 인공지능 산업 실태	126
2) 국내 인공지능 정부 정책 동향	127
(1) 미래창조과학부	129
① 민·관 합동 지능정보기술 연구소 설립 ······	129
② 플래그쉽 프로젝트	131
③ 엑소브레인 프로젝트	131
④ 딥뷰(Deep View) 프로젝트	132
(2) 산업통상자원부	134
(3) 문화체육관광부	136
3-2. 국내 인공지능 관련 연구개발 전략과 연구테마	138
1) 도심 미래형교차로 자율주행 혼합류 환경 통합정보 기술개발	138
(1) 연구목표	138
(2) 개발목표	139
(3) 지원내용	139
2) 저전력광역(LPWA) IoT 네트워크 핵심기술 개발	140
(1) 연구목표	140
(2) 개발목표	141
(3) 지원내용	141
3) 딥-러닝 기반 에너지 분석 기술 개발 및 생산현장 에너지 효율화 실증	142
(1) 필요성	142
(2) 연구목표	142
(3) 개발목표	144
(4) 지원내용	144
4) 빅데이터와 머신러닝 기반의 학생 맞춤형 인공지능 STEM 교육 플랫폼 개발	145
(1) 필요성	145
(2) 연구목표	145
(3) 개발목표	147
(4) 지원내용	147
5) 빅데이터 품질향상을 위한 데이터 신뢰성 분석기법 및 엔진 개발	147
(1) 개념	147
(2) 지원범위	148
(3) 지원내용	148
6) 데이터 스트림 정제를 위한 지능형 샘플링 및 필터링 기술 개발	148
(1) 개념	148
(2) 지원범위	149
(3) 지원내용	149

7) 점진적 기계학습 기반 자가진화(Self-Evolving) 에이전트 시뮬레이션을 이용	·한
사회변화 예측분석 기술 개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	······ 152
8) 대규모 딥러닝 고속 처리를 위한 HPC 시스템 개발	······ 152
(1) 필요성	······ 152
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
9) 빅데이터 기반 기계학습형 산업 평가분석 SW 개발	
(1) 개념	
(2) 지원범위	
(3) 지원내용	
10) 32Gbps 데이터서비스를 위한 익스트림 스토리지 입출력 기술개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
11) 맞춤형 보안서비스 제공을 위한 클라우드 기반 지능형 보안 기술 개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
12) 국민참여형 사회안전서비스를 위한 영상크라우드 소싱 핵심기술 개발	······ 162
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
13) Deep Learning 기반의 보행자 안전지원 스마트카 비전 기술개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
14) 자율주행 스마트자동차용 이상징후 탐지 핵심기술개발	
(1) 필요성	

(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
15) CNN-RNN 지능형 프로세서 아키텍처 및 관련 소프트웨어 개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	
16) 신경모사 인지형 모바일 컴퓨팅 지능형반도체 기술 개발	
(1) 필요성	
(2) 연구목표	
(3) 개발목표	
(4) 지원내용	······ 172
17) 스마트 디바이스용 지능형 반도체 공통 플랫폼 기술개발	······ 172
(1) 필요성	······ 172
(2) 연구목표	······ 172
(3) 개발목표	
(4) 지원내용	
3-3. 국내 AI 특허 동향	
1) 응용 산업별 특허출원 현황	
2) 출원 주체별 특허출원 현황	
4. 인공지능 관련 기술, 시장의 과제와 향후전망	179
4-1. 인공지능 연구의 기술적, 사회적 과제	
1) 기술적 과제	
(1) IoT 기기 보안 문제	
① IC3의 IoT 기기 보안 취약점 경고	
② 여러 측면에서 본 IoT 보안 문제	
③ UPnP 프로토콜의 보안 리스크	
(2) 개인정보 유출 문제	
(3) 안전문제	
① 자율주행 자동차에서의 안전문제	
② 드론을 이용한 테러 등의 위협	
③ 인공지능 전쟁 로봇의 등장	
2) 사회적 과제	
(1) 로봇과 인공지능기술의 발달로 인한 일자리 감소	
(2) 새로운 일자리 창출과 로봇산업 발달의 긍정적 효과	

4-2. 인공지능 연구의 윤리적 과제	
1) 인공지능 규범 연구의 흐름	
2) 인공지능 및 로봇의 법제도적 규제 이슈	
3) 인공지능 규범체계 정립을 위한 정책적 과제	
4) 인공지능 규범체계 정립을 위한 법철학적 논의 과제	
(1) 인공지능과 관련한 3가지 법철학적 쟁점 영역	
(2) 인간의 존엄성과 권리 주체 문제	
(3) 책임 배분의 문제	
(4) 적법절차의 원리 문제	
(5) 규범적・법적 판단의 자동화 문제	
5) 인공지능 시대의 새로운 ICT법체계 정립을 위한 논의 방향	
(1) 새로운 법규범 형태에 관한 연구 및 준비	
(2) 인공지능 알고리즘(또는 아키텍처)의 시민적 통제권한 확보 …	
6) 인공지능과 로봇의 규범체계를 정립하기 위한 사회적 기반 조성·	
4-3. 인공지능 관련 산업 시장 규모와 전망	
1) 미래기술로 주목받는 인공지능 기술	
(1) 국내외 2016년 ICT 유망 기술과 인공지능	
(2) 국내 전망과 해외 10대 이슈와의 비교	
(3) 차세대 ICT의 Brain, 인공지능(AI)	
① 인공지능은 기반 기술 개발에서 타산업의 핵심기술로 프레임	이 변화 209
② 인공지능 적용 유망 분야	
③ 해외 글로벌 기업의 AI 개발 동향	
④ 국내는 인공지능 연구 및 서비스 수준이 미약	
(4) 2016년 인공지능 분야 예상이슈	
2) 인공지능 관련 기술, 시장 규모 전망	
(1) 세계 각 조사기관의 인공지능 관련 시장 규모 종합	
(2) 한국의 인공지능 시장 전망	
5. AI기술을 위한 빅데이터 기술, 시장전망	
5-1. 빅데이터 기술 시장 개요	
1) 개념과 등장배경	
(1) 빅데이터 개념	
(2) 빅데이터 등장배경	
(3) 빅데이터 최근 동향	
2) 산업분야별 활용 사례	
(1) 자동차 산업	
(2) 은행업	······ 222

(3) 에너지산업	······ 222
(4) 정부 및 공공기관	······ 223
(5) 의료업	······ 223
(6) 보험업	······ 224
(7) 유통업	······ 224
(8) 통신업	······ 225
(9) 여행 및 교통 산업	······ 225
3) 빅데이터 시장 규모 전망	······ 226
(1) 세계 빅데이터 시장 전망	······ 226
(2) 국내 빅데이터 시장 규모	······ 227
5-2. 기술수준 평가와 기술개발 계획, 로드맵	230
1) 기술 수준 평가	
2) 빅데이터 핵심 기술 개요와 개발 필요성	231
(1) 비정형 데이터 분석 기술	
(2) 예측 고도화 및 시각화 기술	······ 236
(3) 빅데이터 운영 및 관리기술	
5-3. 빅데이터 중장기 기술 개발 계획	······ 240
1) 중점 개발 기술	······ 240
2) 세부 개발 기술	······ 241
(1) 자연어 처리 기반 텍스트·음성 데이터 분석 기술	······ 241
(2) 영상 데이터 내 컨텐츠 분석 기술	······ 242
(3) 복합 비정형 데이터와 공간 정보 연계 및 분석 기술	······ 243
(4) 실시간 스트림 데이터 처리 및 분석 기술	······ 244
(5) 빅데이터 기반 마이닝 알고리즘 구현 기술 개발	······ 245
(6) 데이터 특성 및 조회 패턴에 기반한 시각화 기술 개발	······ 246
(7) 대량 비정형데이터 수집기술 개발	······ 247
(8) 프라이버시 보존형 데이터 처리 기술 개발	
(9) 예지정비를 위한 빅데이터 분석 플랫폼	
(10) 빅데이터 기반 고객 의도 분석 플랫폼	
(11) 빅데이터 기반 임상의사결정지원 플랫폼	······ 252
5-4. 기술개발 로드맵(2014~2020)	

1.	AI기반	개인비	서 서	비스										259
	1-1. 인	공지능	개인	비서		•••••	•••••	•••••						····· 259
	1) 인	공지능	개인	비서	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	····· 259

2) 글로벌 기업의 인공지능 개인 비서 사업 현황	260
3) 향후 과제	62
1-2. 인공지능 소셜 로봇	63
1) 인공지능 소셜 로봇 현황	63
2) 인공지능 소셜 로봇의 주요 기술	67
3) 향후 과제	269
2. AI기반 지능형 서비스로봇	270
2-1. 지능형 로봇의 분류 및 기술 현황	270
1) 지능형 로봇의 개념	270
2) 지능형 로봇의 분류	271
3) 기술 현황	271
(1) 조작제어 기술	271
(2) 자율이동 기술	272
(3) 물체인식 기술	273
(4) 위치인식 기술	274
(5) HRI 기술 ···································	274
(6) 센서 및 액츄에이터 기술	274
2-2. 지능형 로봇 시장 동향 및 전망	275
1) 산업용 로봇 시장	275
2) 서비스용 로봇 시장	276
2-3. 글로벌 기업의 로봇산업 진출 동향	278
1) 주요 글로벌 기업의 로봇산업 진출 현황	278
2) 주요 글로벌 기업의 로봇분야 M&A 동향	279
2-4. 세계 주요국 로봇 산업 육성 정책	280
1) 해외 주요국 로봇 정책 동향	280
(1) 미국	81
(2) 일본	282
(3) 유럽	82
(4) 중국	282
2) 국내 로봇 정책 동향	283
(1) 제2차 중기 지능형 로봇 기본계획	83
(2) 로봇 비즈니스벨트 구축사업 본격 추진	84
(3) 로봇기술 19개 분야 분류, 이에 대한 R&BD 전략 발표	:85
3. AI기반 의료서비스	286
3-1. 의료 분야에서의 인공지능2	286

1) 의료 서비스 분야에서의 인공지능 도입 현황	
(1) 심리, 정신 분석	
(2) 의료 영상 분석	
① 딥 러닝을 활용한 의료 영상 판독(미국, 인리틱)	
② 뷰노 메드	
(3) AI를 통한 진단 시스템(IBM 왓슨)	
(4) 신약개발	
(5) 의료정보 클라우드 서비스	
(6) 의료 빅데이터 플랫폼	
2) 헬스케어 분야에서의 인공지능 도입 현황	
3-2. 의료분야의 인공지능 도입 과제	
1) 프라이버시 및 보안 문제	
2) 책임소재의 문제	
3) 일자리 문제	
4. AI기반 자율주행 자동차와 드론(무인기)	
4-1. 자율주행 자동차 개발 현황과 전망	
1) 자율주행 자동차 개발 현황	
(1) 자율주행 자동차 개발 단계	
(2) 주요 글로벌 기업들의 자율주행 자동차 개발 현황	
(3) 자율주행 자동차가 갖춰야할 핵심기술	
① 주행환경인지 시스템	
가. Camera ·····	
나. Radar ······	
다. Laser Scanner(LIDAR)	
라. Ultrasonic Sensor	
② 경로의 계획 및 생성기술	
③ 자율주행 자동차 플랫폼	
(4) 현재 자율주행 자동차에 적용되고 있는 기술	
2) 자율주행 자동차 시장전망	
(1) 시장조사 전문 기관의 조사를 토대로 한 시장전망	
(2) 주요 기술별 기술 상용화 전망	
3) 자율주행 자동차 상용화를 위한 선결 과제	
(1) 기술적인 선결 과제	
(2) 법률 및 보험 관련 선결 과제	
(3) 이외의 자율주행 자동차를 위협하는 외부 요인	
4-2. AI기술과 융합하는 드론	

1) 드론의 개요와 동향	317
(1) 드론의 정의 및 응용분야	317
(2) 주요 구성 요소	318
① 비행체	318
② 탑재장비	319
③ 자료 송수신 장비	319
④ 임무계획 및 통제 장비(Mission Planning and Control)	319
⑤ 발사 및 회수 장비(Launcher and Recovery System)	····· 320
(3) 드론의 분류	321
2) 드론 시장 최근 동향	····· 322
(1) 드론 시장 전망	····· 322
(2) 드론의 주요 용도별 사용 분야	324
① 농업용	····· 324
② 물류	326
③ IT분야	327
④ 보험 분야	328
⑤ 기타 산업	329
(3) 2016년 CES를 통해보는 주요기업 동향	330
① DJI	331
② 패럿	332
③ 헥소플러스	333
④ 이항	333
⑤ 바이로봇	335
⑥ 드로젠	336
⑧ 인텔 외, 기타 기업동향	337
3) 국내외 드론 관련 이슈와 과제	340
(1) 국내외 기업 드론 신규 사업 진출 급증	340
(2) 물류, 유통업계의 주목을 받고 있는 드론	342
(3) 드론의 위험성과 보안	344
5. AI기반 지능형 교통 시스템과 서비스	348
5-1. 지능형 교통 시스템	348
1) 지능형 교통 시스템의 구성 및 서비스 분야	348
2) 지능형 교통 시스템의 필요성	350
5-2. 지능형 교통 시스템 국내외 구축 현황	····· 352
1) 국내 지능형 교통 시스템 추진 현황	····· 352
2) 해외 지능형 교통 시스템 추진 현황	354

(1) 미국	
(2) 유럽	355
(3) 일본	356
5-3. 차세대 지능형 교통 시스템	357
1) 차세대 지능형 교통 시스템 개요	357
2) 차세대 지능형 교통 시스템의 주요 시스템 및 보안체계	358
(1) 차세대 지능형 교통 시스템의 주요 시스템	358
(2) 차세대 지능형 교통 시스템의 보안체계	
3) 국내외 차세대 지능형 교통 시스템 추진 동향	
(1) 국내 차세대 지능형 교통 시스템 추진 현황	
(2) 해외 차세대 지능형 교통 시스템 추진 현황	
6. AI기반 금융서비스	
6-1. 금융 서비스 인공지능 적용 현황	
1) 인공지능(기계 학습) 도입 현황	
2) 금융권에서의 IBM 왓슨 적용 시도	
6-2. 금융 분야별 기계 학습(Machine Learning) 적용 사례	
1) 투자 및 트레이딩	
2) 신용평가 및 심사	
3) 사기 방지와 예측	
6-3. 로보 어드바이저	
1) 로보 어드바이저의 개념 및 현황	
2) 로보 어드바이저 성장 배경 및 시장 전망	······ 372
3) 미국 로보 어드바이저 유형 및 제공 서비스와 한국 도입 현황	······ 374
(1) 미국 로보 어드바이저 유형 및 제공 서비스	
(2) 국내 로보 어드바이저 도입 현황	
4) 로보 어드바이저 관련 논란	
7. AI기반 스마트 팩토리	
7-1. 스마트 팩토리의 부상과 인공지능	
1) 사회·문화적 변화	379
(1) 제조업 종사 노동력 감소 및 기능공・숙련공의 고령화 가속	379
(2) 제조분야에 대한 업무기피 및 제조업의 공동화 심화 현상	379
2) 기술적인 변화	380
(1) ICT 기반의 '제4차 산업혁명'의 도래	
(2) IoT·빅데이터·클라우드컴퓨팅·스마트 로봇 등 기반 기술의 발전	381
3) 경제적, 제조 생태학적 변화	

(1) 제조 강국의 세대교체 가속화와 상품 수출과 기술 서비스 접목	381
(2) 사물인터넷의 개화와 제조 생태계의 네트워크화	····· 382
(3) 제조 생태계와 초연결 사회 간의 실시간 연계・소통이 가능	····· 382
4) 정치적 변화	383
7-2. 인공지능 기반의 인더스트리 4.0	385
1) 인더스트리 4.0의 개념 및 등장 배경	385
2) 3차 산업혁명의 한계(인더스트리 3.0)와 인더스트리 4.0	387
3) 인더스트리 4.0의 주요 기술 구조	388
(1) 인공지능을 통한 분산・자율제어 생산체계	388
(2) 사물인터넷을 통한 초연결 생태계	389
(3) 다양한 기술의 발전과 인더스트리 4.0에 적용 가능성	390
4) 인더스트리 4.0의 문제점	391
(1) 표준화의 문제	391
(2) 보안과 관련된 문제	391
(3) 중소기업의 협력에 관한 문제	····· 392
(4) 관련 인재의 부족	····· 392
(5) 인더스트리 4.0에 대한 기업의 이해도 부족	393
7-3. 플랫폼 인더스트리 4.0	394
1) 플랫폼 인더스트리 4.0의 선포 배경	394
2) 플랫폼 인더스트리 4.0의 주요 방향	395
8. AI기반 기타 제품, 서비스	397
8-1. 예술 영역	397
1) 그렇	397
(1) 구글 '딥 드림(Deen Dream)'	397
(2) 헤럭드 코헤의 '아론'····································	398
(3) 독익 튀빗겠대	398
2) 작곡	399
(1) 쿡리타(Kulitta)	399
(1) 필드====(Itulitua) (2) 필드뮤직 ······	399
(3) 작곡 프로그램 LIC산타크루스대 '에믹리 하웩'케잌ㅂ리지대 '주크덴'	401
3) 수석 창작	401
(1) 구글 연구진	401
(2) 일본 공립 하코다테미래대	402
(3) National Novel Generation Month(NaNoGenMo)	403
4) 로봇 퍼포머(연주, 연기자)	403
8-2. 게임 영역	405
	_00

1) 스스로 게임을 공략하는 인공지능	
2) 게임을 활용한 인공지능 연구	
3) 국내 게임사들의 최근 인공지능 활용	407
8-3. 온라인 전자상거래 영역	
1) 온라인 쇼핑몰	
2) 콘텐츠 유통	
8-4. 교육 영역	
1) 인공지능을 통한 1:1 개인지도	
2) 인공지능을 통한 1:1 개인지도의 위험성	······ 412
3) 기타 교육분야 인공지능 활용 현황 및 가능성	······ 412
8-5. 법률 영역	
1) 인공지능 법률 시스템 연구 동향	
2) 인공지능 법률서비스 현황	
3) 인공지능 법률서비스의 과제	
8-6. 농업 영역	
1) 농업에 도입되고 있는 인공지능 로봇	
2) 스마트팜	
(1) 해외 스마트팜 동향	
(2) 국내 스마트팜 동향	······ 422
8-7. AI 저널리즘/기사작성	
1) 해외	423
2) 국내	
8-8. 통/번역	
1) 딥 러닝의 등장과 실시간 통・번역 기술 요소	
2) 해외 연구·개발 현황	
3) 국내 연구・개발 현황	······ 427
4) 세계 시장규모	
8-9. 지능형 감시 시스템	
1) 지능형 CCTV	
(1) 지능형 CCTV 시스템의 주요 구성	
(2) 지능형 CCTV 요소 기술	
2) 인공지능 기술의 적용 예시	
(1) CCTV에 인공지능기술을 적용한 '지능형 감시 시스템'	
(2) 신호를 자동으로 조절해주는 '스마트 신호등'	
(3) 인공지능 '위치추적 서비스'	
3) 홈 IoT와 지능형 CCTV의 결합, 홈 CCTV	
(1) 이동통신사 동향	432

(2)	홈 I	oT ·	허브로서	의	가능성	 4.9	3
(Δ)	日 1		이드도시	1-1	// 0 0	 40	し

Ⅲ. 국내외 인공지능 관련 업체 사업 동향과 전략 ………………………………………………………437

1. 해외 인공지능 관련 업체의 사업 동향과 추진전략	437
1-1. 글로벌 주요 대기업 AI 사업 동향과 전략	437
1) 구글(Google), 미국	437
(1) 회사 일반현황	437
(2) Google의 AI 관련 사업동향	437
① 인공지능 개인비서 구글 나우(Google Now)	438
② 인공지능 엔진 텐서플로우(TensorFlow)	438
③ 사물 인터넷 플랫폼 '브릴로'	
④ 인공지능 모바일 메신저 '챗봇(Chat bot)'	
⑤ 자율주행 자동차 개발	
⑥ AI 벤처 스타트업 인수, 합병	
⑦ 구글의 기타 인공지능 기술(영상인식, 로봇) 개발 동향과 성과	447
2) 애플(Apple), 미국 ·····	449
(1) 회사 일반현황	449
(2) Apple의 AI 관련 사업동향	450
① 인공지능 개인비서 시리	
② 애플의 사물인터넷 플랫폼 '홈 킷'	453
③ 건강관리 플랫폼'헬스킷'	
④ 무인 전기자동차 개발	455
⑤ AI 벤처 스타트업 인수, 합병	
3) 아마존(Amazon), 미국	
(1) 회사 일반현황	
(2) Amazon의 AI 관련 사업동향	
① 인공지능 개인비서 스피커'에코'	
② 허위 상품 리뷰 차단 시스템	······ 462
③ 인공지능 드론을 이용한 배송	
4) 페이스북(Facebook), 미국	
(1) 회사 일반현황	
(2) Facebook의 AI 관련 사업동향 ······	
① 인공지능 서버 빅 서(Big Sur)	465
② 딥 러닝 소프트웨어 프로젝트 토치(Torch)	466
③ 뉴스피드 등에 인공지능 기술 도입	466
④ 인공지능 개인비서 'M'	467

⑤ 인공지능 연구에 대한 대규모 투자	
5) 아이비엠(IBM), 미국	
(1) 회사 일반현황	
(2) IBM의 AI 관련 사업동향	
① 인공지능 컴퓨터 'Watson'	
② 클라우드 플랫폼 '블루믹스'	
6) 마이크로소프트(Microsoft), 미국	
(1) 회사 일반현황	
(2) Microsoft의 AI 관련 사업동향	
① 인공지능 개인비서 '코타나'	
② 딥러닝 툴킷 CNTK(Computational Network Toolkit)…	
③ 클라우드 기반 머신 러닝 서비스 '애저 머신 러닝 서비스	<u> </u>
④ 인공지능 기상캐스터 '샤오빙'	
⑤ AI 스타트업 인수, 합병	
7) 퀄컴, 미국	
(1) 회사 일반현황	
(2) 퀄컴의 AI 관련 사업동향	
① 기계학습 지원, 차량용 프리미엄 칩셋	
② 인공지능 기반 이미지 인식 스타트업 인수	
8) 엔비디아(NVIDIA), 미국	
(1) 회사 일반현황	
(2) 엔비디아의 AI 관련 사업동향	
① 자율주행 자동차용 인공지능 엔진	
② 슈퍼컴퓨팅에 최적화된 GPU	
9) 인텔, 미국	
(1) 회사 일반현황	
(2) 인텔의 AI 관련 사업동향	
① 인텔의 세그웨이'호버보드'	
② 인공지능 드론	
③ 오픈소스 기반 지능형 로봇 '지미(Jimmy)'	
④ AI 스타트업 인수, 합병	
10) 테슬라, 미국	
(1) 회사 일반현황	
(2) 테슬라의 AI 관련 사업동향	
① 인공지능 연구소 '오픈 AI'	
11) 델파이, 미국	
(1) 회사 일반현황	

(2) 델파이의 AI 관련 사업동향	
12) SoftBank, 일본	
(1) 회사 일반현황	
(2) SoftBank의 AI 관련 사업동향 ······	
① 소프트뱅크의 휴머노이드 로봇 '페퍼(Pepper)'	
② 페퍼 이용 사례	
13) Sony, 일본	
(1) 회사 일반현황	
(2) Sony의 AI 관련 사업동향	
① 소니의 자율주행 자동차 개발	
② 소니의 인공지능 로봇 사업	
14) Panasonic, 일본 ·····	
(1) 회사 일반현황	
(2) Panasonic의 AI 관련 사업동향 ······	
① 딥 러닝을 활용한 보행자 인식기술	
② ADAS 기술 개발 ······	
③ ITS 분야 빅데이터 활용	······ 512
15) NEC, 일본 ·····	
(1) 회사 일반현황	
(2) NEC의 AI 관련 사업동향	
① NEC Advanced Analytics RAPID 기계 학습 V1.1	
② 얼굴인식시스템	
16) Toyota, 일본	
(1) 회사 일반현황	
(2) Toyota의 AI 관련 사업동향	
① 도요타의 협력적 자율주행 자동차 전략	
② 미국 대학과 인공지능 공동 연구 시작, 5년간 5000만 달러 투입	
③ 벤처 기업 지원 공동 투자 펀드 설립	
④ 도요타의 인공지능 로봇 관련 사업	
17) Dentsu, 일본	······ 521
(1) 회사 일반현황	······ 521
(2) Dentsu의 AI 관련 사업동향	······ 521
18) 콘티넨탈 오토모티브(Continental Automotive), 독일 ······	······ 522
(1) 회사 일반현황	······ 522
(2) 콘티넨탈의 AI 관련 사업동향	······ 522
① 지능형 유리창 제어	······ 522
② 콘티넨탈의 지능형 교통 시스템	

19) 보쉬(Bosch), 독일 ······	· 525
(1) 회사 일반현황	· 525
(2) 보쉬의 AI 관련 사업동향	· 526
① 스마트 가속 페달	· 526
② 보행자 보호 시스템	$\cdot 528$
③ APAS 패밀리	· 530
20) BMW, 독일 ······	· 531
(1) 회사 일반현황	· 531
(2) BMW의 AI 관련 사업동향	· 531
① CES 2016을 통해 본 BMW의 기술	• 532
21) 다임러 벤츠(Benz), 독일	• 536
(1) 회사 일반현황	· 536
(2) 벤츠의 AI 관련 사업동향	· 536
① 자율주행 승용차	· 536
② 자율주행 트럭	· 538
22) 아우디(Audi), 독일 ······	· 540
(1) 회사 일반현황	· 540
(2) 아우디의 AI 관련 사업동향	· 540
① 아우디의 자율주행 자동차 개발 동향	· 540
② CES 2016을 통해 본 아우디의 기술	· 541
23) 바이두, 중국	• 542
(1) 회사 일반현황	• 542
(2) 바이두의 AI 관련 사업동향	• 542
① 인공지능 기술	· 543
② 지능형 로봇과 개인비서 서비스	· 544
24) 알리바바, 중국	· 545
(1) 회사 일반현황	· 545
(2) 알리바바의 AI 관련 사업동향	· 545
① 인공지능 플랫폼 서비스	· 545
② 엔비디아와의 협업을 통한 GPU 인공지능 개발	· 546
③ 중국 과학기술부와 양자컴퓨터 전문 실험실 공동 설립	· 546
25) 텐센트, 중국	· 547
(1) 회사 일반현황	· 547
(2) 텐센트의 AI 관련 사업동향	· 547
① 인공지능 기사작성 프로그램 '드림라이터(Dreamwriter)'	· 548
26) 하이얼, 중국	· 549
(1) 회사 일반현황	· 549

(2) 하이얼의 AI 관련 사업동향	
1-2. 글로벌 벤처, 스타트업 AI 사업 동향과 전략	
1) 비카리우스(Vicarious), 미국	
(1) 회사 일반현황	
(2) 비카리우스의 AI 관련 사업동향	
2) 메타마인드(MetaMind), 미국	•••••• 552
(1) 회사 일반현황	······ 552
(2) 메타마인드의 AI 관련 사업동향	······ 552
3) 스카이마인드(Skymind), 미국	
(1) 회사 일반현황	
(2) 스카이마인드의 AI 관련 사업동향	
4) 셀렉트(Celect), 미국	
(1) 회사 일반현황	
(2) 셀렉트의 AI 관련 사업동향	
5) 유클리드 애널리틱스(Euclid Analytics), 미국	
(1) 회사 일반현황	
(2) 유클리드의 AI 관련 사업동향	
6) 코노랩스(KonoLabs), 미국	
(1) 회사 일반현황	
(2) 코노랩스의 AI 관련 사업동향	
7) 넷플릭스(NETFLIX), 미국	······ 562
(1) 회사 일반현황	······ 562
(2) 넷플릭스의 AI 관련 사업동향	······ 562
8) 라이엇 게임즈(Riot Games), 미국	
(1) 회사 일반현황	
(2) 라이엇 게임즈의 AI 관련 사업동향	
9) 딥마인드(Deep Mind), 영국	
(1) 회사 일반현황	
(2) 딥마인드의 AI 관련 사업동향	
10) 사이버다인(CYBERDYNE), 일본	
(1) 회사 일반현황	
(2) CYBERDYNE의 AI 관련 사업동향	
① 사이버다인의 인공지능 로봇 슈트 'HAL'	
② 의료·복지용 HAL	
③ 작업지원용 HAL	
④ 기타 HAL의 적용 사례	
⑤ HAL의 기능 향상	

1	1) WACUL, 일본	570
	(1) 회사 일반현황	570
	(2) WACUL의 AI 관련 사업동향	570
	① 웹 분석 기술 '인공지능 분석가'	570
1	2) Preferred Networks(PFN), 일본 ······	573
	(1) 회사 일반현황	573
	(2) Preferred networks의 AI 관련 사업동향	573
	① PFN이 보유하고 있는 기술, 인재 등용 전략	573
	② 대기업, 대학 연구소와의 업무 제휴	574
1	3) COLORFUL BOARD, 일본 ······	576
	(1) 회사 일반현황	576
	(2) Colorful Board의 AI 관련 사업동향	576
	① 패션 인공지능 응용 프로그램 'SENSY'	576
1	4) Shannon Lab, 일본 ·····	578
	(1) 회사 일반현황	578
	(2) Shannon Lab의 AI 관련 사업동향	578
	① 고령자를 위한 학습형 인공지능 간호 시스템'간호 대리인'	578
	② 사무 지원 인공지능 프로그램 개발	579
1	5) Quelon, 일본	580
	(1) 회사 일반현황	580
	(2) Quelon의 AI 관련 사업동향	580
	① 인공지능을 이용한 웹사이트 코멘트 시스템 'QuACS'	580
1	.6) Chotchy, 일본	584
	(1) 회사 일반현황	584
	(2) Chotchy의 AI 관련 사업동향	584
	① 인공지능 기술을 이용한 단체 미팅 개최	584
1	7) ABEJA, 일본	585
	(1) 회사 일반현황	585
	(2) ABEJA의 AI 관련 사업동향	585
	① 인공지능을 활용한 매장 마케팅 기술	585
2. 국	내 인공지능 관련업체의 사업 동향과 추진전략	588
2-1	L. 국내 대기업의 인공지능 관련 사업 동향과 전략	588
1	.) 삼성전자	588
	(1) 회사 일반현황	588
	(2) 삼성전자의 AI 관련 사업동향	589
	① 벤처 스타트업 기업에 대한 투자	590

② 삼성전자의 개인건강관리 플랫폼 '삼성 디지털 헬스'	
③ 사물인터넷 기술	
2) LG전자	
(1) 회사 일반현황	
(2) LG전자의 AI 관련 사업동향	
① 인공지능 연구소 설립	
② 사물인터넷 플랫폼	
3) 네이버	
(1) 회사 일반현황	
(2) 네이버의 AI 관련 사업동향	
① 사업영역의 확장	
② 글로벌 메신저 LINE에 인공지능 도입	
③ 자사 검색·데이터 저장 서비스에 딥 러닝 기술 적용	
③ 네이버 개발자 센터	
4) 카카오(구, 다음 카카오)	
(1) 회사 일반현황	
(2) 카카오의 AI 관련 사업동향	
① 머신러닝 기반 콘텐츠 자동 추천 시스템 '루빅스'	
② 인공지능 기반 스타트업에 대한 투자	
5) SK텔레콤	
(1) 회사 일반현황	
(2) SK텔레콤의 AI 관련 사업동향	
① BE-ME 플랫폼 ······	
② 지능형 아파트	
6) LG유플러스	
(1) 회사 일반현황	
(2) LG U+의 AI 관련 사업동향	
① 사물인터넷 기술	
② 인공지능 로봇 지보(JIBO)	
7) KT	
(1) 회사 일반현황	
(2) KT의 AI 관련 사업동향	
8) 엔씨소프트	
(1) 회사 일반현황	
(2) NC 소프트의 AI 관련 사업동향	
① 인공지능 연구 시설'AI Lab'	
② 인공지능 기술을 게임에 적용	

9) 넷마블 게임즈	
(1) 회사 일반현황	
(2) 넷마블 게임즈의 AI 관련 사업동향	
10) BC카드 ······	
(1) 회사 일반현황	
(2) BC카드의 AI 관련 사업동향	
2-2. 국내 벤처, 스타트업의 인공지능 관련 사업 동향과 전략	
1) 클래스팅	
(1) 회사 일반현황	
(2) 클래스팅의 AI 관련 사업동향	
① 인공지능 학습 비서 '러닝카드'	
2) 유비콰이(UVify)	
(1) 회사 일반현황	
(2) UVify의 AI 관련 사업동향	
3) Scatter Lab ·····	
(1) 회사 일반현황	
(2) Scatter Lab의 AI 관련 사업동향	
4) 솔트룩스	
(1) 회사 일반현황	
(2) 솔트룩스의 AI 관련 사업동향	
① 인공두뇌 아담(ADAM)	
② 인공지능 검색엔진	
③ 실시간 데이터 분석 소프트웨어 'D2'	
5) 디오텍	
(1) 회사 일반현황	
(2) 디오텍의 AI 관련 사업동향	
6) 스탠다임	
(1) 회사 일반현황	
(2) 스탠다임의 AI 관련 사업동향	
7) 뷰노(Vuno)	
(1) 회사 일반현황	
(2) 뷰노의 AI 관련 사업동향	
8) 플런티	
(1) 회사 일반현황	
(2) 플런티의 AI 관련 사업동향	
9) 뤼이드(Riiid) ······	
(1) 회사 일반현황	

(2) 뤼이드의 AI 관련 사업동향	
10) 씽크풀	
(1) 회사 일반현황	
(2) 씽크풀의 AI 관련 사업동향	
11) 루닛(Lunit)	
(1) 회사 일반현황	
(2) 루닛의 AI 관련 사업동향	
12) 솔리드웨어	······ 642
(1) 회사 일반현황	······ 642
(2) 솔리드웨어의 AI 관련 사업동향	······ 642
13) 일리시스	
(1) 회사 일반현황	
(2) 일리시스의 AI 관련 사업동향	

│. 인공지능(AI) 기술, 시장 개요와 향후 전망 ···································	43
<표1-1> 전문가 시스템의 응용 분야	
<표1-2> 기계 학습(머신 러닝)과 딥 러닝의 차이점	
<표1-3> 딥 러닝으로 영어-프랑스어 번역을 수행한 결과	
<표1-4> 인공지능 관련 기술 분야	······ 72
<표1-5> 인공지능 관련 기술 분야	····· 73
<표1-6> 인공지능 도전의 역사	······ 74
<표1-7> 구글 나우의 주요 서비스 내용	
<표1-8> 국내 주요 기업들의 홈 IoT 추진 동향	······ 112
<표1-9> 민간주도 지능정보기술 연구소 참여 기업 주요 관심 분야	
<표1-10> 지능정보 산업 응용 서비스 모델	
<표1-11> 딥뷰 프로젝트 추진전략	
<표1-12> 간담회 참여 업체 · 학계 · 기관 명단	
<표1-13> 인공지능 응용・산업화 추진단 운영계획	
<표1-14> R&D 중점 투자분야 개요	
<표1-15> 게임산업 분야 문화체육관광부 R&D 과제	
<표1-16> 연도별 특허출원 동향	
<표1-17> 응용산업별 특허출원 현황	
<표1-18> 다출원 순위	
<표1-19> 출원 주체별 출원 건수	
<표1-20> 스마트 홈 서비스의 IoT 보안 취약점 예시	
<표1-21> 인공지능과 로봇의 윤리적 프로그래밍 방법론	
<표1-22> 인공지능의 규범적 이슈 및 주요 내용	
<표1-23> 인공지능/로봇의 규범이슈에 관한 학계의 논의 동향	
<표1-24> 인공지능/로봇 관련 해외 민간연구기관 현황	
<표1-25> 10대 이슈별 핵심 키워드	
<표1-26> 2016년 가트너 10대 전략기술 동향의 주요내용	
<표1-27> 세계 각국의 인공지능 관련 시장 전망	
<표1-28> 각 기관별 빅데이터의 정의	
<표1-29> 자동차 산업 주요 활용 사례	······ 221
<표1-30> 은행업 주요 활용 사례	
<표1-31> 에너지 산업 주요 활용 사례	······ 222

<표1-32>	정부 및 공공기관 주요 활용 사례	223
<표1-33>	의료업 주요 활용 사례	223
<표1-34>	보험업 주요 활용 사례	224
<표1-35>	유통업 주요 활용 사례	224
<표1-36>	통신업 주요 활용 사례	225
<표1-37>	여행 및 교통 산업 주요 활용 사례	225
<班1-38>	빅데이터 분야 3대 전략기술 기술수준('13)	230
<표1-39>	비정형 데이터 분석 기술 개발 필요성 및 핵심 기술	231
<班1-40>	예측 고도화 및 시각화 기술 개발 필요성 및 핵심 기술	236
<표1-41>	빅데이터 운영 및 관리기술 필요성 및 핵심 기술	238
<표1-42>	중점 개발 기술	240
<표1-43>	자연어 처리 기반 텍스트·음성 데이터 분석 기술 세부 연구분야	241
<표1-44>	영상 데이터 내 컨텐츠 분석 기술 세부 연구분야	242
<표1-45>	복합 비정형 데이터와 공간 정보 연계 및 분석 기술 세부 연구분야	243
<표1-46>	실시간 스트림 데이터 처리 및 분석 기술 세부 연구분야	244
<표1-47>	빅데이터 기반 마이닝 알고리즘 구현 기술 세부 연구분야	245
<표1-48>	데이터 특성 및 조회 패턴에 기반한 시각화 기술 세부 연구분야	246
<표1-49>	대량 비정형데이터 수집 기술 세부 연구분야	247
<표1-50>	프라이버시 보존형 데이터 처리 기술 세부 연구분야	249
<표1-51>	예지 정비를 위한 빅데이터 분석 플랫폼 세부 연구분야	250
<표1-52>	빅데이터 기반 고객 의도분석 플랫폼 세부 연구분야	251
<표1-53>	빅데이터 기반 임상의사결정지원 플랫폼 세부 연구분야	252

<표2-1> 시리/구글나우/코타나 특징 비교	261
<표2-2> 지능형 로봇의 분류	271
<표2-3> 글로벌 대기업의 로봇산업 진출 동향	278
<표2-4> 글로벌 기업의 로봇분야 M&A 동향	279
<표2-5> 구글의 로봇분야 M&A 현황	280
<표2-6> 세계 주요국별 로봇 산업 정책 요약	280
<표2-7> 제2차 중기 지능형 로봇 기본계획 추진방향	284
<표2-8> 2014~2015 R&D 추진 현황 ······	285
<표2-9> 의료 빅데이터 분석 사례	296
<표2-10> 미국 도로교통안전국이 발표한 자율주행 기술수준	300
<표2-11> 자율주행 자동차 단계	301
<표2-12> 주요 업체별 자율주행 자동차 관련 이슈	303
<표2-13> Monocular Camera/Multi-ocular Camera/Wide Angle Camera 특징	306

<표2-14>	Long Range Radar/Middle Range Radar/Short Range Radar 특징	306
<표2-15>	Laser Scanner ·····	307
<표2-16>	Ultrasonic Sensor ·····	307
<표2-17>	자율주행 자동차 시장전망	310
<표2-18>	주요 업체별 자율주행 자동차 예측	310
<표2-19>	자율주행 시스템 시장전망	312
<표2-20>	주요 자율주행 기술별 상용화 전망	312
<표2-21>	지능형 교통 시스템 서비스 분야	349
<표2-22>	지능형 교통 시스템 추진연혁	353
<표2-23>	미국의 ITS 추진현황	354
<표2-24>	유럽의 ITS 추진현황	355
<표2-25>	일본의 ITS 추진현황	356
<표2-26>	지능형 교통 시스템과 차세대 교통 시스템 간의 비교	358
<표2-27>	보안체계 개념	360
<표2-28>	C-ITS 시범사업 주요 내용	361
<표2-29>	차세대 지능형 교통 시스템 시범사업 15개 서비스	362
<표2-30>	미국, 유럽, 일본의 C-ITS 추진 계획	363
<표2-31>	기계 학습을 활용하는 트레이딩 회사들	368
<표2-32>	기존 자산관리 업체들의 대응 방안	372
<표2-33>	미국 로보 어드바이저 업체별 자산관리 서비스 내역(2015.10월 기준)	375
<표2-34>	주요국의 생산인구 비중	379
<표2-35>	산업혁명 과정 비교	380
<표2-36>	제조업 경쟁력 지수 순위 변동	382
<표2-37>	기존의 인더스트리 4.0과 새로운 플랫폼 인더스트리 4.0의 비교	396
<표2-38>	제임스 포플 교수의 법률 인공지능 시스템 분류	415
<표2-39>	자동번역 기술별 특징과 장단점	425
<표2-40>	국내외 대표적 자동번역기 특징	425
<표2-41>	지능형 CCTV 시스템의 주요 구성	430

Ⅲ. 국내외 인공지능 관련 업체 사업 동향과 전략 ………………………………………………437

<표3-1>	Google Inc. 프로필 ······	437
<표3-2>	구글의 인공지능 기업 인수・합병 현황	445
<표3-3>	Apple Inc. 프로필 ······	449
<표3-4>	애플의 인공지능 기업 인수・합병 현황	456
<표3-5>	Amazon.com, Inc. 프로필 ······	460
<표3-6>	Facebook, Inc. 프로필 ······	465
<표3-7>	International Business Machines Corporation 프로필 ······	470

<표3-8> Mie	crosoft Corporation 프로필 ······	478
<표3-9> 마여	이크로소프트의 인공지능 기업 인수・합병 현황	485
<표3-10> Q	ualcomm, Inc. 프로필 ······	485
<표3-11> N	VIDIA Corporation 프로필 ······	488
<표3-12> In	ntel Corporation 프로필 ······	492
<표3-13> 인]텔의 인공지능 기업 인수·합병 현황	496
<표3-14> Te	`esla Motors, Inc. 프로필 ·······	496
<표3-15> De	elphi Automotive PLC 프로필 ······	498
<표3-16> Se	oftBank Group Corp. 프로필 ······	500
<표3-17> Se	ony Corporation 프로필 ······	506
<표3-18> Pa	anasonic Corporation 프로필 ·····	510
<표3-19> N	EC Corporation 프로필 ······	513
<표3-20> T	`oyota Motor Corporation 프로필 ·····	515
<표3-21> De	entsu Inc. 프로필 ······	521
<표3-22> Co	ontinental AG 프로필 ······	522
<표3-23> Re	obert Bosch GmbH 프로필 ······	525
<표3-24> Ba	ayerische Motoren Werke AG 프로필	531
<표3-25> Da	aimler AG 프로필 ·····	536
<표3-26> 벤	민츠가 보유하고 있는 Top9 기술	537
<표3-27> A	udi AG 프로필 ······	540
<표3-28> B.	AIDU Inc. 프로필 ······	542
<표3-29> A	libaba Group Holding Limited 프로필	545
<표3-30> T	encent Holdings Limited 프로필	547
<표3-31> Ha	laier Group 프로필 ······	549
<표3-32> 비]카리우스(Vicarious) 프로필 ······	551
<표3-33> 메	타마인드(MetaMind, Inc.) 프로필 ······	552
<표3-34> 스	▷카이마인드(Skymind) 프로필 ······	555
<표3-35> 셀]렉트(Celect) 프로필 ······	557
<표3-36> 유	·클리드 애널리틱스(Euclid Analytics) 프로필 ······	558
<표3-37> 코	a노랩스(KonoLabs Inc.) 프로필 ······	560
<표3-38> 넷	Ⅰ플릭스(NETFLIX INC.) 프로필 ······	562
<표3-39> 라	아이엇 게임즈(Riot Games) 프로필	564
<표3-40> 딥	마인드(Deep Mind) 프로필 ······	565
<표3-41> 알	·파고의 학습 기법 ······	566
<표3-42> 삼	·성전자(주) 업체 프로필 ······	588
<표3-43> 삼	·성의 인공지능 기업 투자 현황 ······	591
<표3-44> L0	G전자(주) 업체 프로필	593

<翌3-45>	네이버 업체 프로필	596
<班3-46>	카카오 업체 프로필	600
<표3-47>	SK텔레콤(주) 업체 프로필	604
<班3-48>	(주)LG유플러스 업체 프로필	608
<班3-49>	(주)KT 업체 프로필	612
<班3-50>	엔씨소프트 프로필	613
<표3-51>	엔씨소프트 신규게임 준비 현황	614
<班3-52>	넷마블게임즈 업체 프로필	616
<班3-53>	BC카드 업체 프로필	618

│. 인공지능(Al) 기술, 시장 개요와 향후 전망	43
<그림1-1> 인공지능기술 적용의 흐름	
<그림1-2> 인공지능 기술 연구 분야	
<그림1-3> 비지도학습 - 군집화	
<그림1-4> 전문가 시스템	
<그림1-5> 기계 학습(머신 러닝)과 딥 러닝과의 차이(예시)	
<그림1-6> 딥 러닝으로 문제를 해결하는 방식	
<그림1-7> 딥 러닝 기반 이미지 인식 성능의 현황	
<그림1-8> 페이스북의 딥 페이스 얼굴인식	
<그림1-9> CVPR 학회에서 발표된 이미지를 문장으로 읽어주는 알고리즘	
<그림1-10> 딥 러닝이 음성 인식 분야에 가져온 성능 개선	······ 62
<그림1-11> '클디'의 유방암 진단 엔진	
<그림1-12> 글로벌 기업들의 인공지능 기술 쟁탈전	
<그림1-13> 구글의 '텐서플로우'	
<그림1-14> 마이크로소프트가 공개한 기계 학습(Machine Learning) 툴킷	
<그림1-15> 제퍼디 출연 모습	
<그림1-16> 인공지능의 발전과정	
<그림1-17> 알란 튜링의 일대기를 다룬 영화 '이미테이션 게임'	
<그림1-18> 신경망의 기본 구조	
<그림1-19> 전문가 시스템의 개념	
<그림1-20> 음성 파형으로부터 언어 정보를 추출하는 방법	
<그림1-21> 얼굴사진을 통해 나이를 추정해주는 '하우올드닷넷'	
<그림1-22> 인공 신경망 모델	
<그림1-23> 큐비트를 그림으로 나타내기 위한 '블로크 구 모형'	
<그림1-24> 상업용 양자 컴퓨터 'D-Wave System'	
<그림1-25> 협업 필터링 알고리즘	
<그림1-26> 시리(Siri)의 작동화면	
<그림1-27> 구글 나우 작동화면	
<그림1-28> 마이크로소프트의 코타나 작동 화면	
<그림1-29> 페이스북 개인비서 M의 작동화면	
<그림1-30> 알렉사를 기반으로 한 아마존 에코	
<그림1-31> 구글이 개발 중인 자율주행 자동차	
<그림1-32> 애플의 자동차용 OS '카 플레이'	

<그림1-33>	도요타의 고속도로 자동운전기술 '하이웨이 팀메이트'	102
<그림1-34>	벤츠의 세계최초 자율주행 트럭	102
<그림1-35>	현대자동차의 자율주행 차 시제품	103
<구글1-36>	애플의 홈킷	106
<그림1-37>	구글이 발표한 '브릴로'의 특징	107
<그림1-38>	일본 IoT 시장 기술요소별 매출액 전망	109
<그림1-39>	IoT 시대 도래에 대한 일본 기업 대응에 대한 설문 결과	109
<그림1-40>	IBM의 뉴로모픽 칩 트루노스	114
<그림1-41>	스탠포드 연구소가 개발한 셸리	115
<그림1-42>	신산업구조부회가 제시한 차세대 산업구조 전환	118
<그림1-43>	일본재홍전략의 3가지 액션 플랜	119
<그림1-44>	로봇 사회 실현 프로젝트 공정표	120
<그림1-45>	인공지능 간호로봇의 도입	121
<그림1-46>	기타모토시의 인공지능 네비게이터 '토마'	122
<그림1-47>	카나가와현 마츠다쵸의 페퍼 'Sora'	122
<그림1-48>	일본 자율주행 택시'로봇 택시'	123
<그림1-49>	분선 병렬처리 개념도	128
<그림1-50>	지능정보기술 연구소 개요도	129
<그림1-51>	정부의 1조원 투자 계획	130
<그림1-52>	엑소브레인 단계별 연구목표 및 결과	132
<그림1-53>	엑소브레인 세부과제별 기술개발 내용	132
<그림1-54>	딥뷰 기술 개념도	133
<그림1-55>	과제 구성도	140
<그림1-56>	딥-러닝 에너지 분석 기능 개념도	144
<그림1-57>	빅데이터와 머신러닝 기반의 학생 맞춤형 인공지능 교육 플랫폼 개념도	146
<그림1-58>	자가진화 에이전트 기반 모델링/시뮬레이션 개념도	150
<그림1-59>	대규모 딥러닝 모델을 위한 HPC 분산 병렬 처리 개념도	154
<그림1-60>	초고용량 스트림 데이터 지원 스토리지 입출력 기술 개념도	157
<그림1-61>	개념도	161
<그림1-62>	개념도	164
<그림1-63>	개요도	165
<그림1-64>	개념도	167
<그림1-65>	개념도	169
<그림1-66>	개념도	171
<그림1-67>	개념도	173
<그림1-68>	출원연도별 특허출원 동향	175
<그림1-69>	IPC 세부 기술별 특허출원 동향	176

<그림1-70> 인공지능 기술 분야의 한국, 미국, 일본의 국가별 특허 출원 동향	··· 178
<그림1-71> 개인 정보를 위협하는 IoT의 요소들	··· 179
<그림1-72> UPnP 프로토콜	181
<그림1-73> 해킹에 사용되는 안테나 기기	··· 182
<그림1-74> 총을 장착한 드론	··· 184
<그림1-75> 드론 테러 대비 훈련	··· 184
<그림1-76> 사진기 등의 촬영기기를 장비한 드론	··· 185
<그림1-77> 보잉이 개발한 드론을 추락시킬 수 있는 레이저 포	186
<그림1-78> 영화'터미네이터'속의 킬러 로봇	··· 187
<그림1-79> 인간형 로봇 '아틀라스'	··· 187
<그림1-80> 최초로 항공모함에서 이륙에 성공한 무인 전투기 X-47B 드론	188
<그림1-81> 전세계 산업용 로봇과 미국 제조업 일자리 증감	189
<그림1-82> 미국 로봇 선적량과 고용 증감	190
<그림1-83> 하우스텐보스의 로봇호텔 직원	191
<그림1-84> 요리하는 로봇	··· 192
<그림1-85> 메드에덱스의 해악금지원칙 논리 구조	··· 194
<그림1-86> 2016년 10대 이슈와 Gartner Hype Cycle Mapping	··· 208
<그림1-87> 2016년 10대 이슈 비교	··· 208
<그림1-88> 인공지능 패러다임의 변화	··· 209
<그림1-89> 글로벌 기업들의 인공지능 개발 및 투자 현황	··· 210
<그림1-90> 국내 AI연구 기업 및 대학/연구소 현황	··· 211
<그림1-91> 미래창조과학부의 엑소브레인/딥뷰 프로젝트	··· 211
<그림1-92> 머신 인텔리전스 랜드 스케이프	··· 213
<그림1-93> 지역별 기업용 인공지능 시스템 시장 전망	··· 214
<그림1-94> AI 시스템 시장전망	··· 214
<그림1-95> 스마트 머신 시장 규모와 전망	··· 215
<그림1-96> AI 벤처투자 규모추이	··· 216
<그림1-97> 국내 인공지능 시장 규모 전망	··· 217
<그림1-98> 국내 인공지능 시장 규모 전망	··· 217
<그림1-99> 국내 지능형 로봇 시장 규모 추이	··· 217
<그림1-100> 초기 빅데이터 관리 솔루션 개념도	··· 219
<그림1-101> 빅데이터 시대로의 진입	··· 220
<그림1-102> 불확실한 데이터의 증가	··· 220
<그림1-103> 기술관점에서의 빅데이터 등장배경	··· 221
<그림1-104> IDC 세계 빅데이터 SW 시장 성장 전망	··· 227
<그림1-105> 빅데이터 시장규모	··· 228
<그림1-106> 국내 기업의 빅데이터 활용 현황 및 기술 수준	··· 229

Ⅱ. 주요 인공지능(AI) 기술 수요분야별 시장 현황 및 전망 ··································	259
<그림2-1> 인공지능 스케줄러 '코노'	······ 262
<그림2-2> 주방에 놓여있는 '지보'	
<그림2-3> 소프트뱅크의 '페퍼(Pepper)'	
<그림2-4> 지미(Jimmy)	
<그림2-5> 큐빅 로보틱스의 '큐빅'	
<그림2-6> 이모쉐이프의 '이모스파크'	······ 267
<그림2-7> 지능형 로봇으로의 변화	······ 270
<그림2-8> 세계 산업용 로봇 시장 규모	······ 275
<그림2-9> 국가별 산업용 로봇 시장 현황	······ 276
<그림2-10> 용도별 서비스 로봇 세계 시장 현황	······ 277
<그림2-11> 용도별 서비스 로봇 세계 시장 현황	
<그림2-12> 환자와 대화하는 엘리의 아바타	
<그림2-13> 시스템 교육을 통한 5년 생존율 추정	
<그림2-14> 조직 이미지의 C-Path 분석	
<그림2-15> 뷰노 메드를 통한 이미지 분석	
<그림2-16> 왓슨의 의료 산업 활용	291
<그림2-17> 질의기반 클라우드 방식의 의료정보서비스 개념	
<그림2-18> 의료 빅데이터 분석 방향	295
<그림2-19> 그림으로 보는 자율주행 자동차 단계	301
<그림2-20> 자율주행 자동차 프로세스	302
<그림2-21> 구글 자율주행 자동차 주요 기능(2015년 기준)	302
<그림2-22> 자율주행 자동차 작동 원리	304
<그림2-23> 볼보의 자율주행 자동차 인지 시스템	305
<그림2-24> Radar 인지 프로세스	306
<그림2-25> 경로 계획 및 생성 기술	308
<그림2-26> Matthew Moore & Beverly LU의 자율주행 자동차 상용화 시기 전망…	311
<그림2-27> Adaptive Speed Control / Automatic Emergency Braking 전망	312
<그림2-28> Automatic Lane Maintain / Freeway Driving Mode 전망	313
<그림2-29> Traffic Jam Mode / Automous Parking System 전망	313
<그림2-30> Self-Driving Mode / Autonomous Driving 전망	313
<그림2-31> 각종 무인 비행체	319
<그림2-32> 지상통제소(좌)와 휴대용 무선원격조종기(우)	320
<그림2-33> 각종 발사 방식	320
<그림2-34> 무인항공기 회수	321

<그림2-35>	옥토콥터, 헥사콥터, 쿼드콥터	322
<그림2-36>	전 세계 드론 시장 전망	322
<그림2-37>	주요 국가/대륙별 무인항공기 시장 점유율 현황	323
<그림2-38>	농업에 활용되고 있는 드론	325
<그림2-39>	일본, 호주의 농업용 드론	326
<그림2-40>	Zookal의 배송시스템 ······	327
<그림2-41>	구글의 Loon Project ······	328
<그림2-42>	skycatch사의 드론 ·····	329
<그림2-43>	DJI 팬덤3 4k	331
<그림2-44>	DJI Inspire 1 Pro 블랙 에디션	332
<그림2-45>	패롯 디스코	333
<그림2-46>	헥소플러스	333
<그림2-47>	어플 화면	334
<그림2-48>	메가드론 시험 비행 모습	334
<그림2-49>	바이로봇의 페트론	335
<그림2-50>	LOBIT 320	336
<그림2-51>	인텔이 공개한 타이푼H	337
<그림2-52>	프로드론의 BYRD ······	338
<그림2-53>	이에스브이의 토이 드론	338
<그림2-54>	휴인스의 Blueye 드론 ·····	339
<그림2-55>	플아이	339
<그림2-56>	패럿사의 롤링스파이더	340
<그림2-57>	Typhoon Q5004K ·····	341
<그림2-58>	인텔 Yuneec 드론 예상도	342
<그림2-59>	아마존의 프라임에어	343
<그림2-60>	파주에서 발견 된 무인기	344
<그림2-61>	총쏘는 드론	345
<그림2-62>	예능에 사용되는 드론	345
<그림2-63>	레이시언사의 STM	347
<그림2-64>	지능형 교통 시스템의 기본 구성 체계	348
<그림2-65>	국내에 구축·운영 중인 ITS 서비스	349
<그림2-66>	자동차·도로교통 분야 지능형 교통 시스템의 필요성	351
<그림2-67>	C-ITS 예상도 ·····	357
<그림2-68>	차량단말기	358
<그림2-69>	도로변 기지국	359
<그림2-70>	도로검지레이더	359
<그림2-71>	스마트톨링	359

<그림2-72> 금융권 활용 개념도	
<그림2-73> ANZ의 왓슨 활용 예상 모습	
<그림2-74> 소프트뱅크의 페퍼와 IBM의 왓슨	
<그림2-75> Zest Finance 사의 대출고객 신용분석 알고리즘	
<그림2-76> Betterment 포트폴리오 제시 화면	
<그림2-77> 미국시장 로보 어드바이저 운용자산 전망치	
<그림2-78> 미국 자산관리 시장 내 로보 어드바이저 시장 점유율 전망치	
<그림2-79> 미국 로보 어드바이저 업체별 운용자산 규모(2015.10월 기준)	
<그림2-80> NH투자증권의 QV 로보어카운트 설계 예시	
<그림2-81> 기술 변화에 따른 산업혁명의 4단계	
<그림2-82> IoT · IoS와 스마트 팩토리	
<그림2-83> 인더스트리 4.0 환경	
<그림2-84> 인더스트리 4.0을 촉진하는 환경 요인	
<그림2-85> 인더스트리 3.0과 인더스트리 4.0	
<그림2-86> 독일 인공지능 연구소의 시맨틱 메모리 발전 과정	
<그림2-87> 인더스트리 4.0 시대 양방향 MES/ERP 시스템	
<그림2-88> 인더스트리 4.0의 변화 과정	
<그림2-89> 경매에 나온 구글 인공지능이 그린 그림	
<그림2-90> 아론의 작품	
<그림2-91> 거장의 스타일을 모방한 그림	
<그림2-92> 픽토뮤직의 알고리즘	
<그림2-93> 제미노이드 F	
<그림2-94> 인공지능이 스스로 사과를 찾는 모습	
<그림2-95> 알리바바의 이미지 검색 서비스	
<그림2-96> 아마존의 머신러닝 활용사례	
<그림2-97> 넷플릭스의 추천 요소들	
<그림2-98> 마인드멜드 인터페이스	
<그림2-99> HiPERT를 이용한 자동 상담 플로우	
<그림2-100> 피스컬노트의 Prophecy	
<그림2-101> 실시간 통·번역 구성도	
<그림2-102> 자동번역(Machine Translation Market) 세계 시장전망	
Ⅲ. 국내외 인공지능 관련 업체 사업 동향과 전략	437
<그림3-1> Google Now는 사용자가 원하는 정보를 카드 형식으로 제공…	
<그림3-2> 텐서플로우를 통해 생성한 인공신경망	
<그림3-3> 구글이 발표한 IoT 플랫폼 '브릴로'와 통신규약 '위브'	
<그림3-4> 구글이 개발 중인 자율주행 자동차의 초기 버전	
<그림3-5> 구글의 자율주행 자동차 시제품	

<그림3-6> -	구글이 인수한 딥마인드	445
<그림3-7> -	구글 네스트가 인수한 업체들	446
<그림3-8> -	구글의 역대 기업 인수 비용	446
<그림3-9> -	구글이 인수한 제트팩의 '시티 가이드' 애플리케이션 화면	447
<그림3-10>	이미지를 통해 고양이와 사람을 분류	448
<그림3-11>	애플의 인공지능 개인비서 '시리'	450
<그림3-12>	iOS9에 탑재되는 사용자 맞춤형 '시리 제안' 서비스	451
<그림3-13>	자동차 주행 중 음성 제어가 가능하게 해주는 '아이즈 프리' 기능	453
<그림3-14>	애플이 개발한 스마트 홈 플랫폼 '홈 킷'	453
<그림3-15>	애플 홈 킷 지원 스마트 온도조절기 '에코비3'	454
<그림3-16>	애플의 건강관리 플렛폼 헬스킷	455
<그림3-17>	애플의 자동차용 운영체제(OS)인 '카플레이'	455
<그림3-18>	애플이 인수한 큐(좌)와 구글 나우(우)의 화면 비교	458
<그림3-19>	애플이 인수한 톱시(Topsy)의 트윗 분석 시스템	459
<그림3-20>	사용자가 입력한 키워드에 대한 분석 결과	459
<그림3-21>	아마존의 인공지능 스피커 '에코'	461
<그림3-22>	아마존의 상품 리뷰와 별표 평점 정보	462
<그림3-23>	아마존이 공개한 배송용 드론	464
<그림3-24>	페스북이 공개한 빅 서(Big Sur)	465
<그림3-25>	페이스북의 인공지능 개인비서 M	468
<그림3-26>	페이스북이 인수한 오큘러스 리프트의 가상현실 기기	469
<그림3-27>	IBM의 인공지능 컴퓨터 'Watson' ······	472
<그림3-28>	증가하는 정보와 의사의 부담	473
<그림3-29>	뉴욕게놈센터와 왓슨의 공동연구 프로젝트	474
<그림3-30>	스미토모 은행은 콜 센터에 왓슨을 도입	475
<그림3-31>	마이크로소프트의 스카이프 통역기 서비스	479
<그림3-32>	코타나가 사용자의 관심사를 스스로 파악하여 뉴스 전송	480
<그림3-33>	CNTK의 구조	482
<그림3-34>	GUI기반의 머신 러닝 알고리즘 구성	483
<그림3-35>	인공지능 기상캐스터 '샤오빙'	484
<그림3-36>	퀄컴의 차량용 AP 스냅드래곤 820A	486
<그림3-37>	드라이브웍스	489
<그림3-38>	엔비디아가 제시한 자율주행을 위한 인공지능 개발 구성도	490
<그림3-39>	테슬라 M40	491
<그림3-40>	인텔 '세그웨이' 로봇	493
<그림3-41>	인텔이 공개한 타이푼H	494
<그림3-42>	3D 프린터를 통해 제작한 지미	495

<그림3-43>	델파이의 V2E 기술 구현 이미지	499
<그림3-44>	소프트뱅크의 감정인식 로봇 '페퍼'	500
<그림3-45>	페퍼의 감정 생성 메커니즘	502
<그림3-46>	페퍼의 감정 맵 애플리케이션	502
<그림3-47>	페퍼의 '감정생성엔진' 데모 이미지	503
<그림3-48>	디스플레이 색의 변화를 통한 폐퍼의 감정 상태 확인	503
<그림3-49>	'마음 구미(ココログミ)' 사용 안내	504
<그림3-50>	오하스타645 출연진과 페퍼	504
<그림3-51>	라이더스 퍼블리시티의 폐퍼 도입 안내	505
<그림3-52>	노인 요양시설 고객과 대화하는 페퍼	506
<그림3-53>	자율주행 자동차의 이미지 센서 개념	507
<그림3-54>	소니의 로봇 애완견 'AIBO'	508
<그림3-55>	AIBO의 인공지능	508
<그림3-56>	AIBO의 5가지 '본능'	509
<그림3-57>	파나소닉의 보행자 인식방식	511
<그림3-58>	NEC의 솔루션 활용 분야	514
<그림3-59>	출입국관리 시스템 [Neo Face]	515
<그림3-60>	ZMP사가 개발한 자율주행차 'RoboCar HV'	516
<그림3-61>	도요타가 선보인 렉서스 LS 기반 자율주행 자동차 'AASRV'	517
<그림3-62>	인텔리전트 클리어런스 소나	518
<그림3-63>	도요타의 HSR(Human Support Robot)	520
<그림3-64>	지능형 유리창 제어 기술	523
<그림3-65>	보쉬의 스마트 가속 페달	527
<그림3-66>	스마트 가속 페달의 연결성	527
<그림3-67>	논문에 소개된 윤리적 문제	529
<그림3-68>	보쉬의 보행자 보호 시스템	530
<그림3-69>	보쉬의 APAS 패밀리 시연	531
<그림3-70>	리모드 3D 뷰	532
<그림3-71>	BMW의 오픈 모빌리티 클라우드 개념도	533
<그림3-72>	CES 2016에서 선보인 BMW i 비전 퓨처 인터랙션 콘셉트카	533
<그림3-73>	BMW가 선보인 에어터치	534
<그림3-74>	F015 럭셔리 인 모션을 공개하는 모습	536
<그림3-75>	프레이트라이너 인스피레이션 트럭의 레이더 기술	538
<그림3-76>	자율주행 트럭에 부착된 자율주행 관련 장치들	539
<그림3-77>	아우디의 자율주행 자동차 RS7 '로비'	540
<그림3-78>	CES 2016에서 선보인 버추얼 콕핏	542
<그림3-79>	바이두가 개발한 인공지능 로봇 '샤오두'	544

<그림3-80> 바이두의 서빙로봇 '샤오란(왼쪽)'과 '샤오타오(오른쪽)'	544
<그림3-81> 텐센트가 개발한 인공지능 기사작성 프로그램 드림라이터	548
<그림3-82> 인공지능 냉장고 로봇 'R2D2'	550
<그림3-83> 비카리우스의 투자자 목록	552
<그림3-84> 텍스트 파일 업로드를 통한 학습	553
<그림3-85> 글을 통한 감정 상태 분석	554
<그림3-86> 음식 사진을 분류하는 Food Classifier의 데모	555
<그림3-87> Celect사의 Celect Choice Engine	· 557
<그림3-88> Euclid Analytics의 행동분석 시스템 ······	558
<그림3-89> 유클리드의 서비스 개넘도	559
<그림3-90> 코노랩스의 일정관리 애플리케이션 '코노'	561
<그림3-91> 국내에서 정식 서비스를 시작한 넷플릭스	563
<그림3-92> 사이버다인의 인공지능 로봇 슈트 HAL	567
<그림3-93> 보행보조기기로 이용되는 HAL	568
<그림3-94> HAL을 이용한 보행훈련	568
<그림3-95> WACUL의 웹 분석 프로그램 '인공지능 분석가'	571
<그림3-96> 'AI 분석가'의 실행 화면	572
<그림3-97>'인공지능 분석가'의 CV증가 성과	· 572
<그림3-98> 도요타의 자율주행 자동차 시제품	574
<그림3-99> 파낙의 제조용 로봇	575
<그림3-100> NTT와 PFN이 협력하여 만들 차세대 빅 데이터 분석 기술	575
<그림3-101> Colorful Board가 개발한 'SENSY'	576
<그림3-102> SENSY 실행 화면	577
<그림3-103> Shannon Lab에서 개발한 '간호 대리인 시스템'의 UI	578
<그림3-104> 테블릿 PC로 간호 대리인을 사용하는 모습	579
<그림3-105> Shannon Lab의 사무 지원 인공지능 프로그램 '유코'의 사용화면	· 580
<그림3-106> Quelon이 개발한 인공지능 코멘트 시스템 'QuACS'	581
<그림3-107> QuACS의 도입으로 평균 체류 시간이 연장	· 582
<그림3-108> QuACS의 도입으로 월간 평균 PV가 확대	· 583
<그림3-109> QuACS의 댓글 랭킹	583
<그림3-110> 인공지능 콘 로고	584
<그림3-111> 성별 나이 추정 서비스 'ABEJA Demographic'	586
<그림3-112> 히트 맵 분석 서비스 'ABEJA Behavior'	586
<그림3-113> 2016년 출시 예정인 인공지능 로봇 지보	· 590
<그림3-114> 삼성전자가 공개한 헬스케어 웨어러블 기기 심 밴드	591
<그림3-115> 스마트씽큐 허브	· 595
<그림3-116> LG전자 스마트씽큐	595

<그림3-117>	카카오(다음카카오) 루빅스(Rubics)602
<그림3-118>	에코 메이트의 주요 기능
<그림3-119>	LG U+ IoT@Home 제품군
<그림3-120>	인공지능 로봇 지보
<그림3-121>	엔씨소프트에서 개발 중인 '리니지 이터널'
<그림3-122>	클래스팅
<그림3-123>	인공지능 학습 비서 러닝카드
<그림3-124>	UVify사의 제품인 3차원 인식 카메라
<그림3-125>	Uvify의 드론 네비게이션 단면도
<그림3-126>	Scatter Lab의 채팅 감정 분석 기술 개요
<그림3-127>	Ginger 애플리캐이션의 주요 기능
<그림3-128>	인공두뇌'아담'개념도
<그림3-129>	솔트룩스 D2 ~~~~~ 629
<그림3-130>	아스트라제네카 드림챌린지 순위
<그림3-131>	뷰노 메드 서비스 화면
<그림3-132>	토키의 답변 추천 시스템635
<그림3-133>	산타토익
<그림3-134>	루닛의 기술을 활용한 의료 진단(좌:일반 x-ray / 우:루닛)642
<그림3-135>	솔리드웨어의 솔루션
<그림3-136>	솔리드스튜디오644
<그림3-137>	일리시스 영상분석 엔진
<그림3-138>	일리시스 영상분석 엔진, '인텔리빅스(IntelliVIX)' 활용 이미지 646