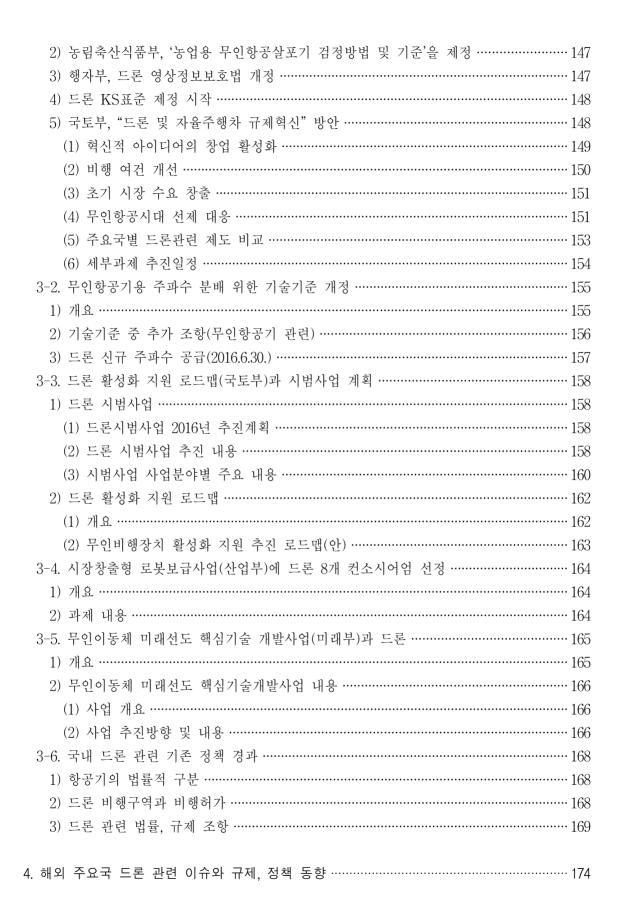


1. 드론(무인기) 개요	
1-1. 드론 개발 역사와 정의, 분류	
1) 드론의 개발 역사	
2) 드론의 정의 및 분류, 활용	
(1) 정의	
(2) 분류	
3) 드론의 주요 구성 요소	······ 62
(1) 비행체	
(2) 탑재장비	
(3) 자료 송수신 장비	
(4) 임무 계획 및 통제 장비(Mission Planning and Control)	
(5) 발사 및 회수 장비(Launcher and Recovery System)	
1-2. 국내외 드론 관련 최근 이슈	
1) 드론의 이중성	
2) 유통업계의 주목을 받고 있는 드론	
(1) 아마존이 불러 일으킨 드론 택배	
(2) 드론 택배, 실험 증가하며 상용화 기대	
(3) 드론 배송서비스 시장 본격 등장	
3) 드론의 상용화가 국가에 미치는 영향	
4) 세분화되는 드론 시장	
(1) 군사용 시장	
(2) 일반 소비자용 시장	
(3) 드론을 이용한 서비스 시장	
5) 전후방 산업 생태계를 선도하는 드론 산업	
(1) 드론산업이 이끄는 후방산업	
(2) 글로벌 기업의 참여 확대	
6) 드론 잡는 기술, 2022년 11억 달러 규모	
1-3. 확장되는 드론의 영역과 부작용	
1) 확장되는 드론의 영역	
(1) 웨어러블 드론	



(2) VR과 결합한 FPV 드론 레이싱	
(3) 앰뷸런스 드론	
(4) 공기청정기 드론	
(5) 언론사 보도기사 드론	
(6) 시험감독 드론	
(7) 화성 탐사 드론	
(8) 인터넷 기지국 드론	
2) 드론의 부정적인 측면	
(1) 무허가 비행과 사생활 침해	
(2) 드론 킬러로봇과 드론테러 가능성	
(3) 건물 충돌 등 사고 위험	
(4) 보안문제	
(5) 기타 드론 악용 사례	
이 드르/다이지) 고려 헤시지스 개회	01
2. 드론(무인기) 관련 핵심기술 개황	
2-1. 드론(무인기) 관련 운용체계 ······	
1) 드론(무인기) 운용 체계 ···································	
(1) 군사용 무인기	
(2) 인간용 구인기 ······ 2) 운영 요원 ······	
2) 눈덩 효원 (1) 무인기 조종사(UAS Pilot)	
(2) 육안 감시자(Visual Observer)	
2-2. 드론(무인기) 관련 통신 및 운용주파수 기술	
1) 무인기(UAS) 통신	
(1) 무한거(UAS) 중선 (2) 스마트무인기(SUAV) 통신시스템 사례	
2) 무인항공기(UAS) 운용주파수 동향	
2) 두 년 중 8 7 (OAS) 전 8 두 9 두 8 중 2-3. 드론(무인기) 엔진 개발 동향	
2 5(1 인기) 11인 개를 8 8 1) 항공기 엔진 원리	
(1) 제트엔진 ······	
(1) 세르 10년 (2) 프로펠러 ·····	
2) 무인기 엔진 개발 동향 ······	
 (1) 무인기 엔진 분류 ···································	
(1) 1 전기 전전 전기(2) 비행임무에 따른 엔진 ···································	
(2) 다양읍니에 따는 관련(3) 무인기 엔진 개발 동향 ···································	
(0) U/ UU / U 0 0	100

3) 4	향후 기술 개발 동향	109
(]	1) 무인기용 차세대 엔진 싸이클	109
(2	2) 스마트 통합 동력장치	110
2-4. 2	드론(무인기)의 동력 관련 개발동향	112
1) 1	태양전지 관련 개발동향	112
(]	1) 'EAV-2H'(한국항공우주연구원)	112
(2	2) 'Helios'(Aerovironment & NASA) ······	114
(3	3) 태양전지 소형무인기(AeroVironment)	115
2) 9	연료전지 관련 개발동향	116
(1	1) 글로벌 옵저버 무인기(AeroVironment) ······	118
(2	2) 수소연료 '팬텀아이'(Boeing)	120
(3	3) 연료전지(fule-cell) 무인기(AeroVironment)	121
(4	4) 아연공기전지(한국전기연구원)	123
(5	5) 연료전지 무인항공기용 수소공급 시스템(한국과학기술원)	125
(6	6) '메탄올 연료전지'무인기(인하대학교) ····································	126
3) i	레이저 추진 시스템(무선전력전송) 개발	126
4) -	공중 급유 관련 개발동향	127
2-5. 5	드론 관련 유망 핵심기술 개발 동향	129
1) 1	드론 충돌회피 기술	132
2) 2	드론 관련 센서 기술	134
(]	1) G-센서	134
(2	2) EO/IR 센서	136
3) a	이착륙 기술	138
	1) 국내	
(2	2) 해외	139
4) ı	배터리 기술	140
(]	1) 태양전지	140
(2	2) 연료전지	141
5) 💈	기타 유망 기술	144
(]	1) 위성항법장치(Global Positioning System) ······	144
(2	2) 영상 기술	145
(3	3) 안면인식 기술	145
3. 드론(-	무인기) 지원을 위한 정부의 최근 정책동향	147
0 1 7	- 그 가장 ^ 가 ^ 가 것 귀 그 귀 상 귀 것	1 477

4-1. 미국	···· 174
1) 최근의 드론 정책 현황	···· 174
(1) '소형 무인항공기 규정(The Small Unmanned Aircraft Regulations)'확정	··· 174
(2) 항공청(FAA), '드론 등록제' 시행	···· 176
2) 주요 드론 정책 추진 경과	···· 177
4-2. EU	···· 182
1) 최근의 드론 정책 현황	···· 182
(1) 드론 이용 대형 재난 극복 기술 개발 추진	····· 182
(2) 민간용 무인기(드론)의 규제안을 마련 중	183
2) 주요 드론 정책 추진 경과	···· 184
4-3. 일본	186
1) 최근의 드론 정책 현황	186
(1) 국가전략특구 '치바시' 드론 택배 허용	···· 187
(2) 드론 음주운전 금지	···· 187
(3) 2018년까지 드론 조종자 1만명 양성	188
2) 주요 드론 정책 추진 경과	188
(1) 일본, 드론 규제 위한 항공법 마련	189
(2) 드론으로 구호물자 전달	189
4-4. 중국	190
1) 최근의 드론 정책 현황	190
2) 주요 드론 정책 추진 경과	191
4-5. UN 국제민간항공기구(ICAO)	···· 192

1. 국내외 드론 시장동향과 전망	195
1-1. 국내외 드론 시장동향과 전망	195
1) 세계시장 동향과 전망	195
(1) 드론 세계 시장전망	195
(2) 드론의 노동시장 대체 전망	196
(3) 미국 드론시장 전망	197
2) 국내 시장동향과 전망	197
(1) 국내 무인(항공)기 시장동향	197
(2) 국내 무인(항공)기 업체동향	201
(3) 국내 무인(항공)기 개발 연혁	204
1-2. 용도별 무인기 시장 동향과 전망	206

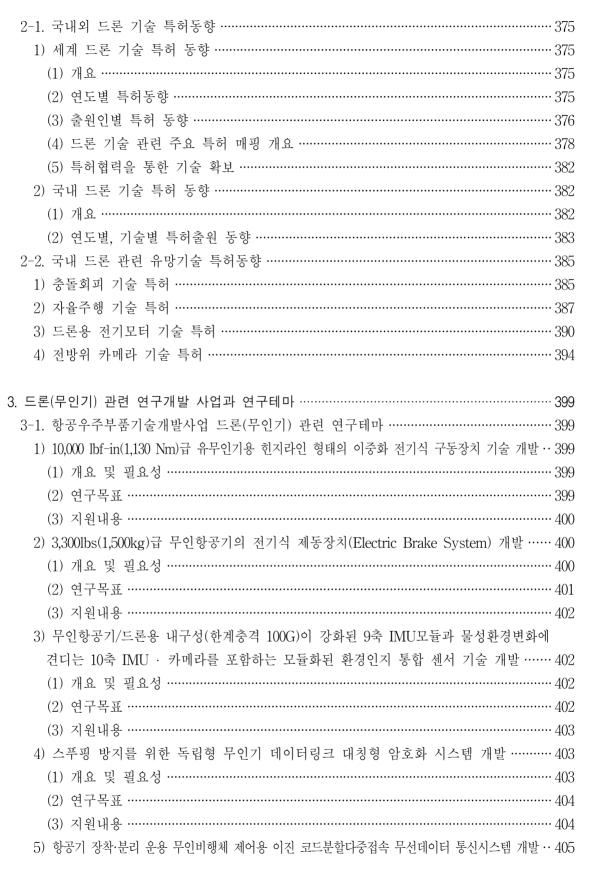
]	l) 군사용 무인기 시장 동향	· 206
	(1) Mini-UAV 시장······	· 208
	(2) STUAV 시장 ······	· 208
	(3) TUAV 시장 ······	· 208
	(4) Naval UAV 시장 ······	· 209
	(5) MALE UAV 시장	· 209
	(6) HALE UAV 시장 ······	· 209
	(7) UCAV 시장 ······	· 209
6 2	2) 민간용 무인기 시장 동향	· 210
1-:	3. 주요국별 드론 시장 동향과 전망	· 213
1	1) 미국	· 213
	(1) 드론 시장동향	· 213
	(2) 드론 활용현황	· 214
	(3) 드론 정책동향	· 217
2	2) 캐나다	· 220
	(1) 드론 시장동향	· 220
	(2) 드론 활용현황	· 223
	(3) 드론 정책동향	· 223
ę	3) 일본	· 225
	(1) 드론 시장동향	· 225
	(2) 드론 활용현황	· 229
	(3) 드론 정책동향	· 230
Z	4) 중국	· 233
	(1) 드론 시장동향	· 233
	(2) 드론 활용현황	· 236
	(3) 드론 정책동향	· 238
Ę	5) 싱가포르	· 239
	(1) 드론 시장동향	· 239
	(2) 드론 활용현황	· 242
	(3) 드론 정책동향	· 245
(5) 뉴질랜드 ·····	· 249
	(1) 드론 시장동향	· 249
	(2) 드론 활용현황	· 251
	(3) 드론 정책동향	· 251
-	7) 벨기에	· 252
	(1) 드론 시장동향	· 252

(2) 드론 활용현황	······ 253
(3) 드론 정책동향	······ 253
8) 네덜란드	······ 255
(1) 드론 시장동향	······ 255
(2) 드론 활용현황	······ 256
(3) 드론 정책동향	······ 258
9) 칠레	
(1) 드론 시장동향	
(2) 드론 활용현황	
(3) 드론 정책동향	
10) 아르헨티나	
(1) 드론 시장동향	
(2) 드론 활용현황	
(3) 드론 정책동향	
1-4. 세계 드론 상용화 경쟁과 시장전망	
1) 세계 상업용 드론 시장 투자동향	
(1) 상업용 드론 참여 기업 현황	
(2) 상업용 드론 투자 현황	
(3) 상업용 드론과 연관 산업 동향	
2) 상업용 드론 시장 과제와 전망	
(1) 영상촬영 위주에서 농업, 배송 등 다양한 분야로 확대	
(2) 드론 운영을 위한 SW・플랫폼 경쟁 시작	······ 274
3) 국내 드론시장의 과제와 전망	······ 275
2. 국내외 무인기 개발동향	
2-1. 국내 무인기 개발동향	
2-2. 국외 무인기 개발동향	
1) 개요	
2) 주요국별 개발 동향	
(1) 미국	
(2) 이스라엘	
(3) 유럽	
(4) 중국	
2-3. 군사용 무인기(드론) 시장과 개발동향	
1) 군사용 무인기(드론) 시장동향	
2) 군사용 무인기 개발동향	

(1) 잠수함용 무인기	$\cdot 298$
(2) 헬기와 트럭 합체형 무인기(드론)	· 299
(3) 육·해·공 자유로운 무인기(드론)	· 300
(4) 미니 헬리콥터형 무인기(드론)	· 301
3. 국내외 드론 개발과 활용 분야 및 사례분석	· 302
3-1. 새로운 드론의 개발 사례	• 302
1) '플라이어빌리티', 충돌에도 끄떡없는 원형 드론	· 302
2) 스위스연방공대, 프로펠러 하나로 비행하는 드론	· 302
3) 스위스연방공대, 드론과 4족 보행로봇 결합	· 303
4)'엑시스', 세계 초소형 카메라 드론 등장	· 304
5) '에어로틴(Aerotain)', 애드벌룬 드론	· 304
6)'윙트라(Wingtra)', 고정익 항공기 기능 갖춘 하이브리드 드론	· 305
7) 취리히 연방공대, 벽타는 드론 '버티고' 공개	· 306
8) 중국'이항'"사람 타는 드론"	· 307
9) 미국(해군), 드론 발사장치・군집 드론 기술 개발	· 308
10) 카이스트, 화염 속에서 벽을 타고 오르는 '방염드론'	· 308
11) DARPA, 소형 전함용 드론 개발	· 309
12) MIT, 캔버스에 그림 그리는 드론 개발	· 310
13) 태양광 드론 튜브	· 311
14) 3D 프린팅 드론	· 311
15) 이스라엘, 453kg 나르는 수직이착륙 드론 개발	· 312
16) 미국 국방부, 방위고등연구계획국(DARPA), 수중 드론	· 313
17) 스위스 로잔공대(EPFL), 박쥐 드론	· 314
3-2. 드론 관련 신기술 개발 사례	· 316
1) 스위스, 숲길 찾아다니는 인공지능 드론	· 316
2) 일본 KDDI, 드론 활용 e메일 전송기술 개발	· 316
3) AT&T, 인텔과 제휴 LTE 드론 기술 연구	· 317
4) 캐나다, 날으는 인터렉티브 디스플레이 '비트 드론'	· 318
5) 아마존 '에코'로 드론 원격 조종 기술 선봬	· 319
6) MIT, 자유자재로 장애물 피하는 드론 기술 개발	· 320
7) 미국, 방위고등연구계획국(DARPA), 캡슐형 드론 시스템 개발 추진	· 321
8) ETRI, 드론용 듀얼 운영체제(OS) 기술개발	· 322
9) 일본'엔루토', 산업용 드론 '클라우드'로 관리	
10) 미국 FAA, '비행 불가 영역(No-fly zone)' 인지 파악하는 앱	· 324
11) 트위터, 메시지로 제어하는 드론	· 324

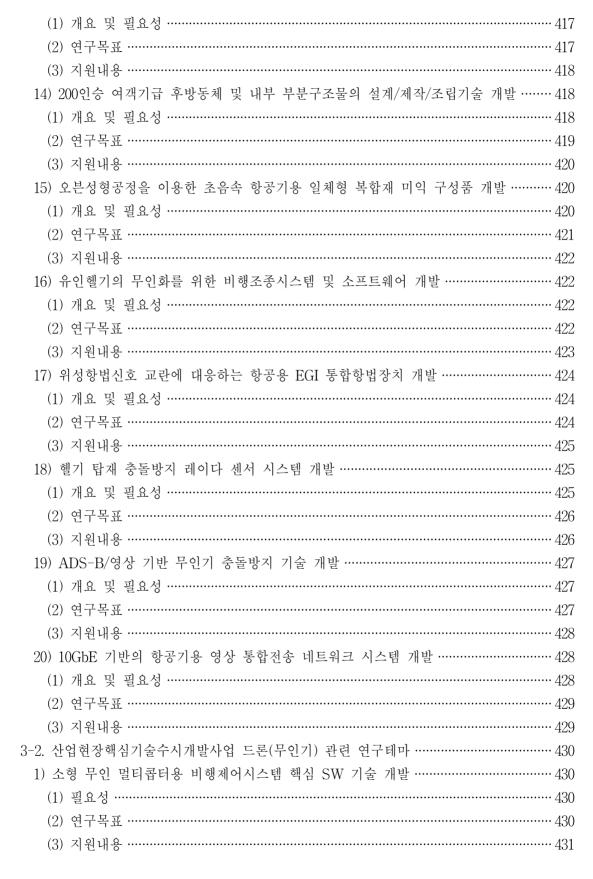
CHO Alliance

12) 페이스북, 태양광 드론에 레이저 링크 기술 접목	
3-3. 드론 관련 신규 서비스 개발 동향	
1) LG유플러스, 드론으로 풀HD 영상 제공	
2) KT, 세계 최초 '드론 LTE 기지국' 구축	
3) 구글, '드론으로 5G인터넷 제공'	
4) 중국 DJI, 드론 전용 보험 출시	
5) 3D로보틱스, 드론 활용 3D매핑 사업	
6) 중국 이항, 장기 수송용 드론 개발 추진	
3-4. 드론 잡는(안티 드론) 기술	
1) 일본 파나소닉, 전방 드론 탐지시스템	
2) 일본 세콤, 드론 탐지시스템 개발	
3) 美 미시간공대, 일본 동경경찰, 드론 포획시스템 개발	
3-5. 기타 주요 용도별 국내외 드론 사업 동향	
1) 물류 배송(택배/구호품/의약품)	
(1) 택배	
(2) 정부문서 배송	
(3) 재난구호품 배송	
2) 건설 및 인프라 점검, 교통, 안전	
(1) 건설 및 인프라 점검	
(2) 재해 재난 관측	
(3) 범죄자 추적과 치안용	
(4) 긴급 재난구조	
(5) 적조감시, 오염, 산불감시 및 소방	
(6) 교통상황 관측	
3) 농업	
(1) 병충해 방재	
(2) 드론 파종	
4) 방송, 영화, 엔터테인먼트	
(1) 방송, 영화	
(2) 엔터테인먼트, 이벤트	
5) 게임, 스포츠, 드론 레이싱	
(1) 리듬 게임 접목한 드론	
(2) 스포츠 드론, '드론보딩'	
(3) 드론레이싱	
6) 공공 임무용	
(1) 국토부, 드론 활용 지적 조사	



(2)) 해수부, 드론 활용 바닷가 실태조사	349
(3)	· 국토부, 토지보상에 드론 활용 ······	350
(4)	으론으로 쪽방촌 공간정보 수집	351
7) 7]	타 드론 활용 사례	351
(1)	아웃도어(레저)용 드론	351
(2)	인명구조 드론	352
(3)	셀카 드론	352
(4)	조종기가 필요 없는 드론	353
(5)	무인경비 드론	353
(6)	전력공급용 드론	353
(7)	호미니 드론	354
(8)	부동산 중개 드론, 초밥 서빙 드론	355
(9)	이 인터넷, 통신용 드론	355

1. 드론 관련 기술 표준화 동향	359
1-1. 개요	359
1-2. 주요 표준화 중점기술 기술 동향	360
1) 자율주행용 MDR(Map Data Representation)	360
(1) 국내 기술개발 현황 및 전망	360
(2) 국외 기술개발 현황 및 전망	360
2) 무인비행 로봇(안전운용) 기술	361
(1) 국내 기술개발 현황 및 전망	361
(2) 국외 기술개발 현황 및 전망	361
1-3. 국제 표준화 현황 및 전망	368
1) ISO TC184/SC2 : 서비스 로봇 관련 표준 추진	368
(1) ISO TC20/SC 16 : 무인 비행체 시스템 표준 추진	368
2) 표준화 추진 및 대응 전략	368
(1) 자율주행용 MDR(Map Data Representation)	368
(2) 무인 비행 로봇	370
1-4. 중장기 표준화 계획 로드맵	373
1) 중기(2016~2018) 표준화 계획	373
2) 장기(~2025) 표준화 계획	374



(1) 개요 및 필요성	···· 405
(2) 연구목표	405
(3) 지원내용	406
6) 모핑날개 적용을 위한 형상기억 폴리머 복합재 (SMPC) 플랩 모듈 개발	406
(1) 개요 및 필요성	406
(2) 연구목표	407
(3) 지원내용	407
7) 마이크로웨이브 성형법을 이용한 탄소섬유 열가소성 복합재 경항공기 일체형	
수평꼬리날개 개발	408
(1) 개요 및 필요성	408
(2) 연구목표	408
(3) 지원내용	409
8) ADS-B기반 무인항공기 충돌회피시스템 개발	409
(1) 개요 및 필요성	409
(2) 연구목표	409
(3) 지원내용	410
9) 200kg급 틸트로터 무인기의 함상운용 입증을 위한 기술개발	411
(1) 개요 및 필요성	···· 411
(2) 연구목표	•••• 411
(3) 지원내용	···· 412
10) 마이크로웨이브 성형법을 이용한 탄소 열가소성 복합재 항공기 수직꼬리날개	
리딩에지 제조기술 개발	···· 412
(1) 개요 및 필요성	···· 412
(2) 연구목표	413
(3) 지원내용	···· 414
11) CT 융합기반 무인항공기 협동 운용시스템 개발	···· 414
(1) 개요 및 필요성	···· 414
(2) 연구목표	···· 414
(3) 지원내용	···· 415
12) 초음속 항공기용 17,700 파운드급 엔진 Nozzle Fairing Assembly 제작을 위한	
성형후처리조립기술 개발	···· 415
(1) 개요 및 필요성	···· 415
(2) 연구목표	···· 416
(3) 지원내용	···· 416
13) 내추락성 및 2.75% (MIL-G-26988 Class II) 측정정확도를 가진 헬기용 연료량	
측정장치 기술개발	···· 417

CHO Alliance

2) 글로벌 리더급 무인 항공기 개념설계 및 핵심기술 개발	•••• 431
(1) 필요성	•••• 431
(2) 연구목표	···· 432
(3) 지원내용	···· 432
3-3. 정보통신, 방송기술개발 사업 드론(무인기) 관련 연구테마	···· 433
1) 안전한 드론 서비스를 위한 보안 정보유출 대응 및 ID관리 기술 개발	•••• 433
(1) 필요성	433
(2) 연구목표	•••• 434
(3) 지원내용	•••• 435
2) 클라우드 기반의 점진적 정밀 진화형 맵 생성 및 주행상황인지 SW 기술개발(1세부)·	••• 435
(1) 연구목표	•••• 435
(2) 지원내용	···· 436
3) 클라우드 맵 기반의 자율이동 서비스 다양성 지원을 위한 개방형 PnP형	
플랫폼 기술 개발(2세부)	
(1) 연구목표	
(2) 지원내용	438
4) 고신뢰성 다종 무인이동체 통신 및 보안 SW기술 개발	438
(1) 필요성	438
(2) 연구목표	439
(3) 지원내용	439
3-4. 기타 사업과제 드론(무인기) 관련 연구테마	440
1) 소방관용(구조 및 구급대원용_육상) 스마트 헬멧 개발	440
(1) 필요성	440
(2) 연구목표	
(3) 연구내용	···· 442
(4) 최종 성과물	•••• 444
(5) 기대효과	•••• 444
4. 드론(무인기) 관련 기술개발 전략	
4-1. 고기능 무인기 분야 미래성장동력 실천계획과 전략	
1) 개요	445
2) 종합분석	
(1) 시장 측면	
(2) 산업 생태계 측면	446
3) 목표 및 단계별 추진전략	446
4) 전략별 추진내용	···· 447

	(1) 연구개발 역량 강화	·· 447
	(2) 사업화 촉진	·· 450
	(3) 국내외 시장 확대	·· 451
	5) 추진 로드맵	·· 454
	6) 추진과제별 담당 부처	·· 454
4-	2. 무인기 기술 연계 분야 미래성장동력 개발전략과 추진 계획	•• 455
	1) 지능형 사물인터넷	•• 455
	(1) 추진 계획 개요	·· 455
	(2) 그 간 추진실적 ('14~'15)	·· 455
	(3) 2016년도 주요 추진내용	·· 455
	(4) 2016년 투자계획	•• 455
	(5) 추진 로드맵(2020년)	·· 456
	2) 5G 이동통신	·· 457
	(1) 추진 계획 개요	·· 457
	(2) 그 간 추진실적 ('14~'15)	·· 457
	(3) 2016년도 주요 추진내용	·· 457
	(4) 2016년 투자계획	·· 457
	(5) 추진 로드맵(2020년)	
	3) 지능형 반도체	
	(1) 추진 계획 개요	
	(2) 그 간 추진실적 ('14~'15)	·· 459
	(3) 2016년도 주요 추진내용	·· 459
	(4) 2016년 투자계획	·· 459
	(5) 추진 로드맵(2020년)	
	4) 지능형 로봇	·· 461
	(1) 추진 계획 개요	·· 461
	(2) 그 간 추진실적 ('14~'15)	
	(3) 2016년도 주요 추진내용	
	(4) 2016년 투자계획	•• 461
	(5) 추진 로드맵(2020년)	
	5) 가상훈련시스템	·· 463
	(1) 추진 계획 개요	
	(2) 그 간 추진실적 ('14~'15)	
	(3) 2016년도 주요 추진내용	
	(4) 2016년 투자계획	
	(5) 추진 로드맵(2020년)	·· 464

6) 실감형 콘텐츠	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020년)	
7) 착용형 스마트기기	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020년)	
8) 맞춤형 웰니스케어	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020년)	
9) 재난안전관리 스마트시스템	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020년)	
10) 빅데이터	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020년)	
11) 신재생에너지 하이브리드 시스템	
(1) 추진 계획 개요	
(2) 그 간 추진실적 ('14~'15)	
(3) 2016년도 주요 추진내용	
(4) 2016년 투자계획	
(5) 추진 로드맵(2020)	

	12) 첨단소재 가공시스템	477
	(1) 추진계획 개요	477
	(2) 그 간 추진실적 ('14~'15)	477
	(3) 2016년도 중점추진방향	477
	(4) 투자계획	477
	(5) 추진 로드맵(2020)	478
4-	3. 무인이동체 기술개발 및 성장전략	479
	l) 무인이동체 정의 및 범위	479
	(1) 무인이동체 정의	479
	(2) 무인이동체 구분 및 시장분류	479
6 4	2) 무인이동체 시장전망	480
	(1) 무인이동체 시장 현황 및 전망	480
	3) 무인이동체 통합발전 전략 추진배경	481
	(1) 무인이동체('무인·자율화' + '이동체') 구현 기술	481
	(2) 해외 산업계 통합발전 동향	481
	(3) 미래 무인이동체 통합운영 환경	482
2	4) 비전 및 9대 과제별 추진전략	484
	(1) 무인기 시장 성장동력 확충	485
	(2) 자율주행 자동차 글로벌 경쟁력 강화	487
	(3) 무인 농업·해양건설 산업화 촉진	489
	(4) 무인이동체 공통기술개발	490
	(5) 차세대 무인이동체 원천기술개발	492
	(6) 법·제도 정비 및 확충	495
	(7) 실증 및 테스트 지원	496
	(8) 주파수 분배 및 기준 마련	497
	(9) 범국가적 추진체계 구축	498
	4. 무인이동체 발전 5개년(2016 - 2020)계획	
	l) 무인이동체에 대한 통합적 접근으로 효율성 제고	
	(1) 무인이동체 공통기술 개발	
	(2) 전문 핵심부품·중소기업 육성	
	(3) 무인이동체 안전성 향상	505
	(4) 무인이동체 통합 글로벌 테스트베드 기반 구축	506
4	2) 분야별 생태계 조성을 통한 시장경쟁력 제고	508
	(1) 무인기 시장경쟁력 조기 확보	
	3) 효율적 추진체계 구축	514
	(1) 범부처 협업체계 운영	514

	(2) 무인이동체 기술 로드맵 및 분야별 계획 수립	· 515
	(3) 공공혁신조달 도입 및 기술지원 연계	· 516
	4) 과제별 추진일정	· 518
	(1) 무인이동체에 대한 통합적 접근 전략 분야	· 518
	(2) 분야별 생태계 조성을 통한 시장경쟁력 제고 전략 분야	· 519
	(3) 효율적 추진체계 구축 전략분야	· 519
4-	5. 중소기업 무인기 시스템 개발 전략(로드맵)	· 520
	1) 개요	· 520
	(1) 정의 및 필요성	· 520
	(2) 범위 및 분류	
	2) 중소기업 기술 수요	· 525
	(1) 기술수요 조사	· 525
	(2) 중소기업청 R&D과제 신청현황	· 525
	3) 기술군 도출	· 526
	(1) 특허 및 논문을 이용한 키워드 클러스터링	· 526
	(2) 특허분류체계를 이용한 기술트리	· 526
	(3) 데이터 기반의 요소기술 도출	· 528
	4) 기술지수 분석	· 529
	(1) 기술성장성 분석	· 529
	(2) 기술수준 분석	· 530
	(3) 중소기업 적합성 분석	· 530
	5) 요소기술별 종합평가	· 531
	6) 요소기술 도출	• 532
	7) 핵심기술 선정	· 533
	8) 로드맵 기획	· 535
	(1) 연구개발 목표 설정	· 535
	(2) 중소기업형 전략기술 개발 로드맵(2016~2018)	· 538

1. 국내 드론 사업 참여업체 사업 동향과 전략	541
1-1. 드론 제작・공급업체(대기업, 중견기업)	541
1) 대한항공(주)	541
(1) 일반 현황	541
(2) 드론 관련 개발 현황	542
2) 한국항공우주산업(주)	544

	(1) 일반 현황	· 544
	(2) 드론 관련 개발 동향	· 546
ę	3) ㈜한화	· 550
	(1) 일반 현황	· 550
	(2) 드론 관련 개발 현황	· 551
2	4) ㈜LG CNS	· 552
	(1) 일반 현황	
	(2) 드론 관련 개발 현황	
Ę	5) LG 유플러스	
	(1) 일반 현황	
	(2) 드론 관련 개발 현황	
(5) LIG넥스원 ······	
	(1) 일반 현황	
_	(2) 드론 관련 개발 동향 ······	
	7) 퍼스텍(주) ····································	
	(1) 일반 현황 ······	
c	(2) 드론 관련 사업 전략	
2	8) 한화테크윈	
	(1) 일반 연용(2) 드론 관련 사업동향 ····································	
C	(2) 드곤 관련 자급공항 9) 성우엔지니어링	
i	9 경구엔지디이딩 (1) 일반 현황	
	(1) 보인 11%(2) 드론 관련 개발 동향	
-	(2) 드는 단단 개발 8 8 10) CJ대한통운	
-	(1) 일반 현황 ······	
	(2) 드론 관련 사업 전략 ···································	
1	11) 제이씨현시스템 ······	
	(1) 일반 현황······	
	(2) 드론 관련 개발 동향	
1-2	2. 드론 제작업(전문기업, 스타트업)	· 574
]	1) 유콘시스템(주)	· 574
	(1) 일반 현황	$\cdot 574$
	(2) 드론 관련 사업전략	· 575
2 2	2) 바이로봇	· 584
	(1) 일반 현황	· 584
	(2) 드론 관련 개발 현황	· 585

3) 엑스드론	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
(3) 종류 및 제원	
4) 네스앤텍	
(1) 일반 현황	······ 594
(2) 드론 관련 개발 동향	····· 594
5) 혤셀	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
6) ㈜샘코	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
7) ㈜휴인스	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
8) ㈜두시텍	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
9) 드론텍	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
10) 이에스브이	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
11) 드로젠	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
12) ㈜휴니드테크놀러지스	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
13) 에이알웍스(AR Works)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
14) 이랩코리아	
(1) 일반 현황	

	(2) 드론 관련 개발 동향	· 616
	15) 그리폰 다이나믹스(Gryphon Dynamics) ······	· 617
	(1) 일반 현황	· 617
	(2) 드론 관련 개발 동향	· 617
	16) 유비파이	· 618
	(1) 일반 현황	· 618
	(2) 드론 관련 개발 동향	· 619
	17) 얼티밋드론	· 619
	(1) 일반 현황	· 619
	(2) 드론 관련 개발 동향	· 620
	18) ㈜케바드론	· 621
	(1) 일반 현황	· 621
	(2) 드론 관련 개발 동향	· 621
	19) 로보링크	· 622
	(1) 일반 현황	· 622
	(2) 드론 관련 개발 동향	· 623
	20) 애니룸(ANIROOM)	· 624
	(1) 일반 현황	· 624
	(2) 드론 관련 개발 현황	· 624
	21) 제이와이시스템	· 625
	(1) 일반 현황	· 625
	(2) 드론 관련 개발 현황	· 625
1-	-3. 드론 관련 부품, 솔루션 기업	· 627
	1) 엠씨넥스	· 627
	(1) 일반 현황	· 627
	(2) 드론 관련 개발 동향	· 628
	2) 한국카본	· 629
	(1) 일반 현황	· 629
	(2) 드론 관련 개발 동향	· 630
	3) ㈜드론프레스	· 631
	(1) 일반 현황	· 631
	(2) 드론 관련 개발 동향	· 631
	4) 해성옵틱스	· 632
	(1) 일반 현황	· 632
	(2) 드론 관련 개발 동향	· 632
	5) MDS테크놀로지	· 633

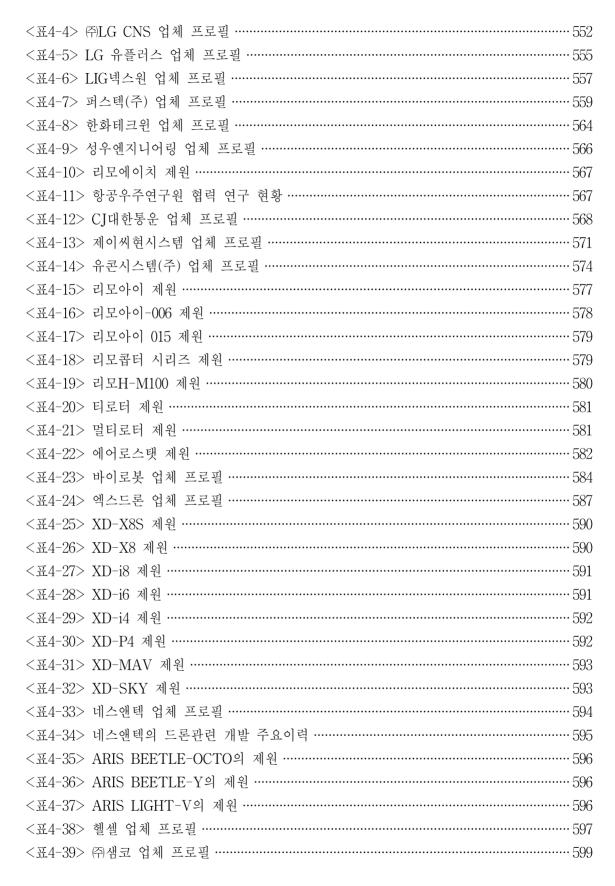
(1) 일반 현황	COO
(2) 드론 관련 개발 동향	
1-4. 드론 관련 연구 기관, 단제 1) 한국항공우주연구원	
1) 한국양공구구연구원 ··································	
(1) 일반 연왕······(2) 드론 관련 개발 현황····································	
(2) 드몬 된던 개월 원용 2) 한국전자통신연구원(ETRI)	
2) 인덕전지정전전 [편(EIII) (1) 일반 현황	
(1) 보인 인정(2) 드론 관련 개발 현황 ···································	
(2) ― こ しし // き しる	040
2. 해외 드론 사업 참여업체 사업 동향과 전략	
2-1. 중국	
1) DJI(다장촹신, 大疆創新) ······	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
2) 이항(Ehang, 北京 亿航創世科技有限公司)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
3) 샤오미(北京小米科技 有限責任公司)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
4) Syma(广東司馬航模 實業有限公司)	
(1) 일반 현황	······ 652
(2) 드론 관련 개발 동향	
5) 협산(Hubsan)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
6) 중국항공공업그룹회사(AVIC, 中國航空工業集團公司)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
7) 하워(Harwar)	
(1) 일반 현황	
(2) 드론 관련 개발 동향	
2-2. 미국	
1) 보잉(Boeing)	
(1) 일반 현황	

	(2) 드론 관련 개발 동향	· 660
	2) 록히드 마틴(Lockheed Martin) ······	· 664
	(1) 일반 현황	· 664
	(2) 드론 관련 개발 동향	· 665
	3) 노스롭 그루먼(Northrop Grumman) ······	· 667
	(1) 일반 현황	· 667
	(2) 드론 관련 개발 동향	· 668
	4) 제너럴 아토믹스(General Atomics) ······	· 669
	(1) 일반 현황	· 669
	(2) 드론 관련 개발 현황	· 669
	5) 3D 로보틱스(3D Robotics)	· 671
	(1) 일반 현황	· 671
	(2) 드론 관련 개발 동향	· 673
	6) 구글(Google)	· 675
	(1) 일반 현황	
	(2) 드론 관련 개발 동향	· 677
	7) 페이스북(Facebook) ······	· 680
	(1) 일반 현황	
	(2) 드론 관련 개발 동향	· 681
	8) 아마존(Amazon)	
	(1) 일반 현황	· 682
	(2) 드론 관련 개발 동향	
	9) 에어웨어(Airware)	· 684
	(1) 일반 현황	· 684
	(2) 드론 관련 개발 동향	· 685
	10) 스카이캐치	· 686
	(1) 일반 현황	· 686
	(2) 드론 관련 개발 동향	· 686
	11) 고프로(GoPro)	· 687
	(1) 일반 현황	· 687
	(2) 드론 관련 개발 동향	· 687
2-	-3. 일본	· 689
	1) 소니(SONY)	· 689
	(1) 일반 현황	· 689
	(2) 드론 관련 개발 동향	· 690
	2) 세콤(SECOM)	· 691

	(1) 일반 현황	·· 691
	(2) 드론 관련 개발 동향	·· 692
	3) 히타치(Hitachi)	693
	(1) 일반 현황	693
	(2) 드론 관련 개발 동향	693
	4) 야마하발동기(Yamaha) ···································	694
	(1) 일반 현황	694
	(2) 드론 관련 개발 동향	694
	5) 코마츠(Komatsu) ······	695
	(1) 일반 현황	695
	(2) 드론 관련 개발 동향	696
2-	-4. 유럽/기타	698
	1) 패럿(Parrot)	698
	(1) 일반 현황	698
	(2) 드론 관련 개발 동향	699
	2) 마이크로드론(Micro Drone)	·· 702
	(1) 일반 현황	·· 702
	(2) 드론 관련 개발 현황	·· 702
	3) 스쿼드론 시스템(Squadrone System)	·· 704
	(1) 일반 현황	·· 704
	(2) 드론 관련 개발 동향	·· 705
	4) 탈레스(Tales)	·· 706
	(1) 일반 현황	·· 706
	(2) 드론 관련 개발 동향	706
	5) 토킹(Torquing) ·····	708
	(1) 일반 현황	708
	(2) 드론 관련 개발 동향	708
	6) 바이오닉 버드(Bionic Bird) ·····	·· 709
	(1) 일반 현황	·· 709
	(2) 드론 관련 개발 동향	·· 709
	7) 이스라엘 항공우주산업(IAI: Israel Aerospace Industries)	
	(1) 일반 현황	·· 710
	(2) 드론 관련 개발 동향	
	8) 볼보콥터(Volvocopter, 독일) ······	
	(1) 일반 현황	·· 712

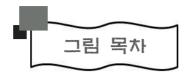
<표2-1>	국내 항공시스템 수급현황 및 전망	200
<표2-2>	항공시스템 품목별 국내 생산 현황	201
<표2-3>	항공시스템 분야 주요 제품의 국내 업체 현황	202
<표2-4>	상업용 무인기 현황	211

<표2-5> 개인용 무인기 현황
<표2-6> 드론과 위성 이미지 비교
<표2-7> 미국에서 시판중인 무인항공기 현황
<표2-8> 미국 연방항공국의 소형 드론 등록제 주요 내용
<표2-9> FAA 드론 규제 제안 주요내용 (2015년 2월)
<표2-10> 2015년 시판 중인 민간용 드론 현황
<표2-11> 레저용 드론 조종사 준수사항
<표2-12> 일본 드론 시장 가능성에 투자하는 해외기업
<표2-13> 자사 비즈니스 특성에 맞게 개발한 드론 사례
<표2-14> 2014년 중국 10대 군사용 무인기 제조 기업
<표2-15> 중국 기관별 드론 규제 법률
<표2-16> 싱가포르 드론 수입 현황(HS Code 9503.00.99 기준)
<표2-17> 드론 관련 주요 정부 조달 입찰 내용(최근 6개월)
<표2-18> 싱가포르 드론 시장(오락용) 주요 제품
<표2-19> GeoSpace 활용 정부기관 및 역할
<표2-20> 드론 법안 주요 내용
<표2-21> 드론 사용 목적 및 무게에 따른 필요 허가 유형
<표2-22> Aeronavics사 드론 제품
<표2-23> 드론 카테고리별 세부 내용
<표2-24> 연도별 드론 수입현황(HS Code 8525.80.10 기준)
<표2-25> 연도별 드론 수입현황(HS Code 9503.00.80 기준)
<표2-26> 연도별 드론 수입현황(HS Code 8802.11.90 기준)
<표2-27> 칠레에 유통 중인 드론 제품
<표2-28> 최근 5년간 국별 수입액
<표2-29> 글로벌 인터넷 기업 드론 사업내용
<표2-30> 글로벌 HW제조사 드론 사업내용
<표2-31> 기타 글로벌 기업 드론 사업 참여내용
<표2-32> 글로벌 기업 드론 관련 투자 및 M&A 현황
<표2-33> 중국 10대 군사용 무인기 제조 기업
<표2-34> 시판 중인 무인기 현황
<표2-35> 세계 주요 군사용 무인기 비교

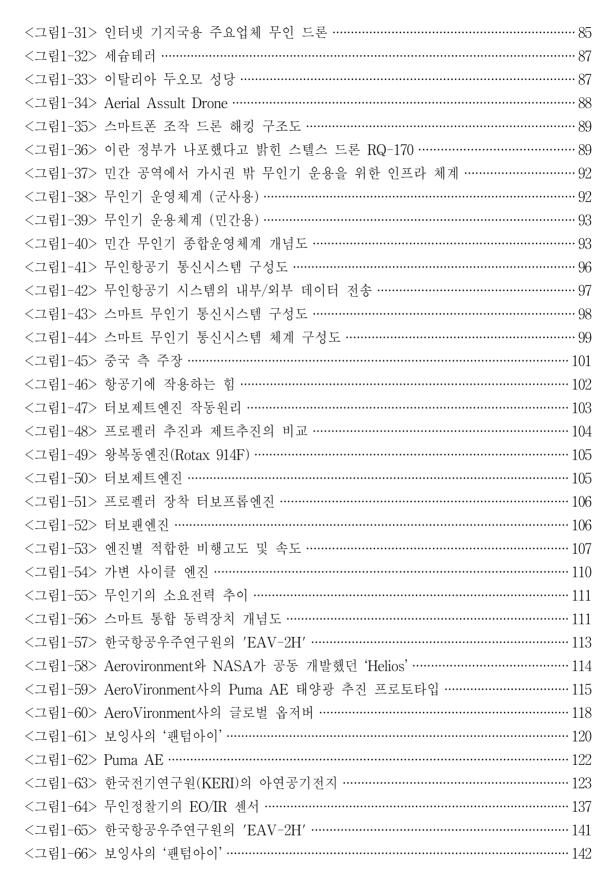

<표3-1> 로봇기술 중점 표준화 기술	분야 및 내용(무인기 관련분야)
<표3-2> 국내외 소형무인기 개발 및	활용사례
<표3-3> 무인 비행로봇 특허 동향 …	

<표3-4> 무인기 특허 출원기업의 국가별등록 현황	67
<표3-5> 자료 분석에서 들어난 확실한 신흥 기술 분야 ···································	
<표3-6> 주요 업체별 특허 진화도 ···································	
<표3-7> 국내 드론 기술별 특허출원 추이	
<표3-8> 2015년 드론관련 특허사례 ····································	
<표3-9> 국내 충돌회피 주요 특허기술 목록 ···································	
<표3-10> 주요 출원인의 기술 분야별 출원 현황 ('01~'15.10월) ····································	
<표3-11> 주요 출원인의 해외특허 출원 현황 ('01~'15.10월) ····································	
<표3-12> 2009년 및 2013년 전기모터의 총 출원건수 현황 ···································	
<표3-13> 전방위 카메라분야 5년간 평균 출원 건수 및 증감율 ···································	
<표3-14> 특허 출원 발명 사례 ···································	
(표3-15) 무인기 분야 확대개편(안)	
<표3-16> 틸트로터 기술수준 및 개발전략 ····································	
<표3-17> 무인기 선도기술	
<표3-18> 민간 무인기 활용분야 및 임무장비 ····································	
<표3-19> 해외 무인 전문기업 주요사례	
<표3-20> 국내·외 소형드론 기술·가격 경쟁력 비교	85
<표3-21> 국내·외 주요 소형드론 기업 매출액 비교48	85
<표3-22> 자율주행 자동차 10대 핵심 부품48	38
<표3-23> 단기 기술개발 주요 분야 (예시)	00
<표3-24> 중·장기 기술개발 주요 분야 (예시) ····································	00
<표3-25> 무인기 시스템 제품분류 관점의 범위	21
<표3-26> 무인기 시스템 공급망 관점의 범위	22
<표3-27> 일반(민수/군용 완제기) 항공시스템 주요제품 분류표	22
<표3-28> 무인기 시스템 분야 과제신청 현황	25
<표3-29> 요소기술 도출	28
<표3-30> 기술성장성 분석	29
<표3-31> 기술수준 분석	30
<표3-32> 요소기술별 종합평가표	
<표3-33> 무인기 시스템 기술분야 요소기술	
<표3-34> 핵심기술 선정결과	33

	<표4-1> 대한항공(주) 업체 프로필
<u>-</u> 545	<표4-2> 한국항공우주산업(주) 업체 프
	<표4-3> ㈜한화 업체 프로필



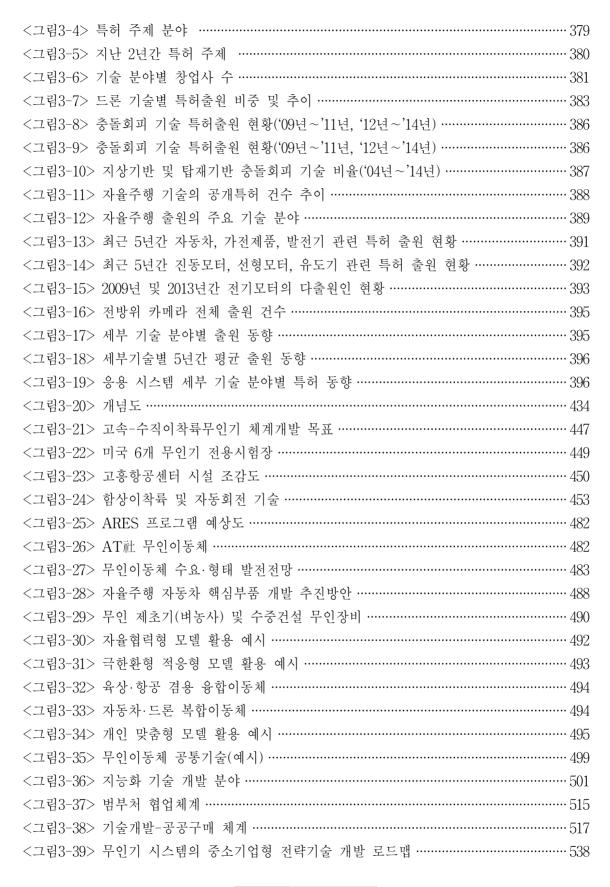
<표4-40> ㈜휴인스 업체 프로필	500
<표4-41> ㈜두시텍 업체 프로필 ···································	
<표4-42> 드론텍 업체 프로필 ·······6	
<표4-43> 이에스브이 업체 프로필 ···································	
<표4-44> 드로젠 업체 프로필	
<표4-45> (주)휴니드테크놀러지스 업체 프로필	
<표4-46> AR Works 업체 프로필6	
<표4-47> 이랩코리아 업체 프로필6	
<표4-48> ㈜그리폰 다이나믹스 업체 프로필	
<표4-49> 유비파이 업체 프로필6	
<표4-50> 얼티밋드론 업체 프로필	
<표4-51> ㈜케바드론 업체 프로필	521
<표4-52> 로보링크 업체 프로필	323
<표4-53> 애니룸 업체 프로필	324
<표4-54> 제이와이시스템 업체 프로필	325
<표4-55> 엠씨넥스 업체 프로필	527
<표4-56> 한국카본 업체 프로필	529
<표4-57> ㈜드론프레스 업체 프로필	531
<표4-58> 해성옵틱스 업체 프로필	532
<표4-59> MDS테크놀로지 업체 프로필	334
<표4-60> 전기동력 무인기의 개발 이력	538
<표4-61> DJI 업체 프로필	5 42
<표4-62> 팬텀 비전플러스의 제원	345
<표4-63> 팬텀3의 제원	345
<표4-64> 이항 업체 프로필	347
<표4-65> 이항의 연혁6	548
<표4-66> Ghost의 제원	
<표4-67> 샤오미 업체 프로필	
<표4-68> Syma 업체 프로필6	
<표4-69> X시리즈 제원	
<표4-70> 협산 업체 프로필	
<표4-71> Hubsan사의 X4 Pro	
<표4-72> 중국항공공업그룹 업체 프로필	
<표4-73> 보잉 업체 프로필	
<표4-74> Phantom Eye의 제원	
<표4-75> 록히드 마틴 업체 프로필6	64


<표4-76> 노스롭그루먼 업체 프로필	668
<표4-77> 제너럴 아토믹스 업체 프로필	669
<표4-78> 3D 로보틱스 업체 프로필	···· 671
<표4-79> 3D 로보틱스사의 IRIS+ ······	···· 673
<표4-80> 3D 로보틱스사의 솔로(Solo)	···· 674
<표4-81> 구글 업체 프로필	···· 676
<표4-82> 페이스북 업체 프로필	680
<표4-83> 아마존 업체 프로필	683
<표4-84> 에어웨어 업체 프로필	684
<표4-85> 스카이캐치 업체 프로필	686
<표4-86> 고프로 업체 프로필	687
<표4-87> 소니 업체 프로필	689
<표4-88> 세콤 업체 프로필	···· 692
<표4-89> 히타치 업체 프로필	693
<표4-90> 야마하발동기 업체 프로필	···· 694
<표4-91> 코마츠 업체 프로필	696
<표4-92> 패럿 업체 프로필	698
<표4-93> 마이크로드론 업체 프로필	···· 702
<표4-94> MD4-2000 / MD4-1000 비교 ······	···· 703
<표4-95> 스쿼드론 시스템 업체 프로필	···· 704
<표4-96> 탈레스 업체 프로필	···· 706
<표4-97> 토킹 업체 프로필	···· 708
<표4-98> 바이오닉 버드 업체 프로필	···· 709
<표4-99> 이스라엘 항공우주산업 업체 프로필	···· 710
<표4-100> 볼보콥터 업체 프로필	···· 712

│. 드론(무인기) 개요와 기술, 정책 동향과 전망	45
<그림1-1> 무인기(UAV: Unmanned Aerial Vehicle)	50
<그림1-2> 옥토콥터, 헥사콥터, 쿼드콥터	
<그림1-3> 세계의 주요 군사용 무인기	······ 52
<그림1-4> 정찰용 무인기	53
<그림1-5> IAI社의 Harpy	······ 54
<그림1-6> 무인전투기(UCAV)	······ 54
<그림1-7> 운용 고도별 세계 무인기 종류	56
<그림1-8> 무인기 형태별 분류	59
<그림1-9> 무게별 무인기 분포	
<그림1-10> 무인기 시스템 구성도	
<그림1-11> 각종 무인 비행체	63
<그림1-12> 지상통제소(좌)와 휴대용 무선원격조종기(우)	
<그림1-13> 각종 발사 방식	
<그림1-14> 무인항공기 회수	
<그림1-15> 파주에서 발견 된 무인기	
<그림1-16> 방송, 예능에 사용되는 드론	
<그림1-17> 레이시언사의 STM	
<그림1-18> 아마존의 프라임에어	
<그림1-19> RQ-170 ·····	······ 72
<그림1-20> 노스롭 그루먼의 글로벌 호크	······ 74
<그림1-21> 구글의 타이탄 에어로스페이스(좌), 페이스북의 태양열드론 아퀼라(우) …	······ 76
<그림1-22> Typhoon Q5004K	78
<그림1-23> 인텔 Yuneec 드론 예상도	
<그림1-24> 웨어러블 드론	
<그림1-25> FPV드론 영상수신기	
<그림1-26> 헤드 트래킹 무브	
<그림1-27> 앰뷸런스 드론	
<그림1-28> 공기청정기 드론	
<그림1-29> 보도사진 촬영	
<그림1-30> 화성 탐사 드론	

<그림1-67>	Puma AE ······	144
<그림1-68>	리얼센스 카메라	146
<그림1-69>	Aeryon사의 HDZoom30 ······	146
<그림1-70>	비전 및 목표	149
<그림1-71>	드론사용사업 범위 네거티브 전환	149
<그림1-72>	부처 통합형 승인시스템]	150
<그림1-73>	안전가이드 앱 "Ready to Fly"	151
<그림1-74>	드론 하이웨이 및 UTM 개념	152
<그림1-75>	서울의 비행금지구역	168
<그림1-76>	드론의 비행 가능구역 및 금지구역	169
<그림1-77>	무인비행장치 비행 절차	172
<그림1-78>	RECONASS 개념도 ···································	182

Ⅱ. 드론(무인기) 시장과 개발, 활용사례 분석 ······	95
<그림2-1> 무인기 세계시장 규모 및 용도 및 전망	195
<그림2-2> 주요 국가/대륙별 무인항공기 시장 점유율 현황	196
<그림2-3> 드론이 대체할 경제 규모 전망	197
<그림2-4> 고속 수직 이착륙 무인항공기 예비타당성 조사계획	198
<그림2-5> World UAV Budget Forecast ······	206
<그림2-6> 세계 종별 군사용 무인기 시장 전망	207
<그림2-7> 무인기 트렌드	210
<그림2-8> 상업용 드론의 시장 규모 현황과 예상	213
<그림2-9> FAA 소형 드론 승인 사용 분야별 비중	215
<그림2-10> 드론 관련 규정을 시행한 주요 5개주와 규정 수	218
<그림2-11> FAA 소형 드론 승인 건수 추이	218
<그림2-12> 캐나다 민간 드론 업체 수	221
<그림2-13> 지역별 캐나다 민간용 드롭 관련 기업 분포	222
<그림2-14> 캐나다 특수운항증명서(SFOC) 발급 현황	224
<그림2-15> 일본 산업용 드론·무인 비행기 시장규모 예측	226
<그림2-16> 일본 산업용 드론·무인 비행기 용도별 시장예측	227
<그림2-17> 일본 업무용 드론 시장 규모 전망	228
<그림2-18> ALSOK이 투입한 태양열 패널 점검용 드론	230
<그림2-19> 드론 사건 후에 일어난 사건 및 규제 움직임	233
<그림2-20> 2004년~2013년 중국 군사용 드론 수량 변화 추이	236
<그림2-21> 알리바바의 무인택배 모습	237
<그림2-22> 음식 서빙 드론 'Infinium-Serve'	240


<그림2-23>	싱가포르 뎅기 발생 현황(2015년)	242
<그림2-24>	The Water Spider	243
<그림2-25>	건물을 촬영하는 드론 및 3D 디지털 모델로 구현된 Baba House	243
<그림2-26>	GeoSpace 플랫폼 ·····	244
<그림2-27>	싱가포르 내 드론 비행 제한구역	247
<그림2-28>	드론 이용 가이드라인	249
<그림2-29>	Fieldays에서 전시된 Aeronavics사 드론 제품	250
<그림2-30>	Fastway 무인항공기 배송 ······	251
<그림2-31>	카테고리별 높이 제한 비교	255
<그림2-32>	와헤닝헌 대학에서 드론으로 촬영·분석한 데이터	258
<그림2-33>	무인항공기 운행 통제구역	259
<그림2-34>	항공우주연구소가 개발한 틸트로토 스마트무인기 TR-100	276
<그림2-35>	KUS-TR ·····	277
<그림2-36>	한국의 드론 기술력 수준	278
<그림2-37>	아마존의 배송서비스 Prime Air	279
<그림2-38>	최초의 드론서커스 Air	280
	록히드마틴의 스컹크웍스(Skunk Works)	
<그림2-40>	MQ-9 이크하나	283
<그림2-41>	보잉사의 F/A-XX	284
<그림2-42>	Pioneer ·····	286
<그림2-43>	다쏘가 참여한 군사용 무인기 개발 프로그램 nEUROn	287
<그림2-44>	EADS 합작으로 개발한 Barracuda	288
<그림2-45>	Stratobus ·····	289
<그림2-46>	중국관 Predator로 알려진 Yilong(翼龍)	290
<그림2-47>	2004~2013년 중국 군사용 드론 수량 변화 추이	290
<그림2-48>	Taobao의 드론을 이용한 배송	292
<그림2-49>	중국의 차세대 드론 차이훙 4호	294
<그림2-50>	세계 무인기 시장 전망	296
<그림2-51>	무인기 용도별 시장전망	297
<그림2-52>	무인기 사용국 현황	297
<그림2-53>	잠수함 탑재 무인비행기 `코모란트'	298
<그림2-54>	헬기와 트럭 합체형 무인기(드론)	300
<그림2-55>	블랙 호넷(Black Hornet)	301
<그림2-56>	엑시스사가 개발한 카메라 탑재형 초소형 드론 '비디어스'	304
<그림2-57>	에어로틴(Aerotain)의 '스카이(Skye)'	305
<그림2-58>	윙트라가 개발한 하이브리드 드론 '윙트라'	306

<그림2-59>	'버티고(VertiGo)' ·····	307
<그림2-60>	드론 발사장치(좌), 날개를 펼쳐 비행하는 드론(우)	308
<그림2-61>	드론 발사 시연장면	308
<그림2-62>	DARPA가 개발 중인 VTOL 드론	310
<그림2-63>	그림 그리는 드론	311
<그림2-64>	태양광 드론 튜브	311
<그림2-65>	3D 프린터로 만들어진 드론	312
<그림2-66>	이스라엘, 에어뮬(Air Mule) ······	313
<그림2-67>	수중 드론	314
<그림2-68>	박쥐 드론 DALER ······	315
<그림2-69>	아마존 '에코'를 활용한 드론 원격 조종 개념도	320
<그림2-70>	바다 속에 설치된 캡슐 이미지(좌)와 작전 개념도	322
<그림2-71>	'엔루토' 산업용 드론	324
<그림2-72>	트위터 드론 이미지	325
<그림2-73>	구글이 인수한 '타이탄 에어로스페이스'의 태양광 드론	327
<그림2-74>	드론 탐지시스템의 구성도	330
<그림2-75>	미국 스타트업 '플러티', 드론 배송 성공	332
<그림2-76>	미국의 글로벌 호크	337
<그림2-77>	중국 스모그 제거 드론	338
<그림2-78>	르노의 플라잉 컴패니언	342
<그림2-79>	농업용 드론	343
<그림2-80>	Bigger than life에서 드론으로 촬영된 얼음동굴	344
<그림2-81>	디즈니가 2014년 특허 등록한 LED 드론을 이용한 공연기술 개요	345
<그림2-82>	오케스트라의 연주에 맞춘 드론 불꽃놀이	345
<그림2-83>	와우위(Wowwee) 드론 '루미(Lumi)' ·····	346
<그림2-84>	드론보딩	347
<그림2-85>	플라이어빌리티사의 '짐볼'	352
<그림2-86>	Torquing사의 'Zano' ·····	353
<그림2-87>	포켓 플라이어(Pocket flyer) ······	354
<그림2-88>	영국 런던 초밥 전문점 요스시의 드론 서비스	355
<그림2-89>	구글 룬 프로젝트	356

<コ	립3-1>	연도별 드	론 관련	특허 건수	현황 …	 '5
<コ	.림3-2>	공개된 특	특허 출원	건 국가별	분포도	 76
<コ	림3-3>	특허권자	별 특허 등	등록 및 출	원 건수	 /8

Ⅳ. 국내외 드론(무인기) 사업 참여업체 동향과 전략	·····541
<그림4-1> 사단급 정찰용 드론 'KUS-FT'	
<그림4-2> 국내개발 항공기 1호, 기본 훈련기 KT-1	
<그림4-3> 국내 최초의 초음속 고등훈련기 T-50	
<그림4-4> 국산 첫 헬기 KUH-1, 수리온	
<그림4-5> T-50 ······	
<그림4-6> T-50B ······	
<그림4-7> TA-50 ······	
<그림4-8> FA-50 ······	
<그림4-9> KUH-1 ·····	
<그림4-10> UAV, '송골매' ······	
<그림4-11> 수중탐색용 자율무인잠수정 HW AUV(Autonomous Underwa	ater Vehicle) 552
<그림4-12> LG CNS의 무인헬기 사용 용도	
<그림4-13> 다목적 무인헬기 운용개념도	
<그림4-14> 무인수상정 운용 개념도	
<그림4-15> 퍼스텍의 개발제품(군수관련)	
<그림4-16> 퍼스텍의 개발제품(무인화 분야)	······ 562
<그림4-17> 한화테크윈, 임무용 드론	
<그림4-18> 큐브드론	
<그림4-19> CJ 스카이도어	
<그림4-20> DJI사의 드론	······ 572
<그림4-21> 이항사의 드론	
<그림4-22> 유콘시스템(주)의 리모아이	
<그림4-23> 무인 정찰기 '리모아이'	
<그림4-24> 리모아이 006	
<그림4-25> 리모아이 015	
<그림4-26> 리모콥터 (상업용)	
<그림4-27> 농업용 방제헬기(리모-H M100)	
<그림4-28> 티로터(T-Rotor)	
<그림4-29> 민간용 드론 '멀티로터' 개발 완료단계	
<그림4-30> 국내 최초 무인비행선 에어로스탯(Aerostat)	······ 582
<그림4-31> 바이로봇의 대표작 '드론파이터'	
<그림4-32> 바이로봇이 'CES 2016'에 선보인 신형 드론 '페트론'	
<그림4-33> 대테러작전 및 교전 시 드론 운용 개념도	
<그림4-34> 재난현장 드론 투입 개념도	
<그림4-35> 독도탐사 무인정찰기	

<그림4-36>	샘코의 드론 제품	600
<그림4-37>	휴인스 농업용 드론 'MC-16'	601
<그림4-38>	GNSS의 구성 ······	603
<그림4-39>	두시텍이 공동 개발한 3D공간정보 서비스를 이용한 3D모델 생성화면	604
<그림4-40>	'케이엔드론(KnDrone)' ······	605
<그림4-41>	드론텍 콘트롤러	606
<그림4-42>	드론텍의 '헬프 드론'	607
<그림4-43>	드로젠 로빗 300 GT	610
<그림4-44>	드로젠 퍼즐렉스	611
<그림4-45>	드로젠이 중국 협산과 공동 개발한 토이드론 렌더링	612
<그림4-46>	독일 볼보콥터(Volvocopter)가 개발한 유인드론	612
<그림4-47>	AR Works VENTUS(AR-X8) ·····	615
<그림4-48>	'CES 2016'의 이랩코리아 드론	616
<그림4-49>	2016 드론쇼 코리아의 그리폰 다이나믹스	617
<그림4-50>	얼티밋드론	620
<그림4-51>	케바드론의 KD-1(씨델타, SeaDelta)과 KD-2	622
<그림4-52>	로보링크의 '코드론(CoDrone)' ······	623
<그림4-53>	'토포 드론100'(TopoDrone-100)	626
<그림4-54>	EAV-3 ·····	638
<그림4-55>	틸트로터	639
<그림4-56>	큐플러스 에어	641
<그림4-57>	DJI사의 인스파이어 ······	646
<그림4-58>	첫 자율비행기 이항184	650
	샤오미, '미(Mi) 드론'과 콘트롤러	
<그림4-60>	Syma X5C ·····	653
	Syma X5SC ·····	
	Syma X5SW ·····	
	Syma X8C ·····	
	Syma X8W ·····	
	AVIC사의 이룽 (翼龍) ······	
	HW4800 V8	
	팬텀아이	
	보잉의 충전기술 개념도	
	드론 잠수정의 원리	
	록히드마틴 코모란트 프로젝트	
<그림4-71>	록히드마틴의 SR-72	666

<그림4-72>	SR-72 구상도
<그림4-73>	노스롭그루먼 사의 X-47B
<그림4-74>	MQ-9 리퍼 ···································
<그림4-75>	어벤저
<그림4-76>	구글의 무인기
<그림4-77>	룬 프로젝트
<그림4-78>	룬 프로젝트 구상도 ······679
<그림4-79>	구글 룬 프로젝트에 사용 될 풍선
<그림4-80>	페이스북의 아퀼라
<그림4-81>	아마존의 프라임에어
<그림4-82>	에어웨어 모듈
<그림4-83>	코마츠의 작업계획에 사용될 미국 스카이캐치사의 드론
<그림4-84>	Sony & ZMP의 에어로 센스691
<그림4-85>	세콤사의 방범용 드론
<그림4-86>	야마하사의 무인헬기 '페이저'
<그림4-87>	패럿사의 롤링스파이더
<그림4-88>	패럿사의 점핑스모
<그림4-89>	패럿사의 비밥드론
<그림4-90>	패롯의 첫 고정익 드론 '디스코(Disco)'
<그림4-91>	마이크로드론사의 MD4-1000
<그림4-92>	HEXO+
<그림4-93>	탈레스사의 Stratobus
<그림4-94>	Torquing사의 Zano
<그림4-95>	바이오닉 버드(Bionic Bird) 이미지709
<그림4-96>	ISI사의 하로프
<그림4-97>	독일 볼보콥터(Volvocopter)가 개발한 유인드론

