목 차

1. 조사개요 27 1-1. 조사대상과 방법, 조사내용 27 1) 조사대상 27 2) 조사방법(DB, 검색어, 검색기간) 27 3) 조사내용(조사 항목) 27 1-2. 미국의 에너지 하베스팅 연구 동향과 현황 28 1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41 2) 미국 R&D 투자 트랜드 및 현황 분석 42
1-1. 조사대상과 방법, 조사내용 27 1) 조사대상 27 2) 조사방법(DB, 검색어, 검색기간) 27 3) 조사내용(조사 항목) 27 1-2. 미국의 에너지 하베스팅 연구 동향과 현황 28 1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
1) 조사대상 27 2) 조사방법(DB, 검색어, 검색기간) 27 3) 조사내용(조사 항목) 27 1-2. 미국의 에너지 하베스팅 연구 동향과 현황 28 1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2) 조사방법(DB, 검색어, 검색기간)273) 조사내용(조사 항목)271-2. 미국의 에너지 하베스팅 연구 동향과 현황281) 2004~2017년(1,099개)28(1) 기관별 현황 및 추이28(2) 주요 키워드292) 2014~2017년(410개)32(1) 기관별 현황32(2) 주요 키워드352. 미국 R&D 예산 동향382-1. 2018년 미국 주요 R&D 예산 현황381) 개요382) 2018년도 미국 비국방 R&D 예산 현황402-2. 미국 R&D 투자 동향411) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석41
3) 조사내용(조사 항목) 27 1-2. 미국의 에너지 하베스팅 연구 동향과 현황 28 1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
1-2. 미국의 에너지 하베스팅 연구 동향과 현황 28 1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
1) 2004~2017년(1,099개) 28 (1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
(1) 기관별 현황 및 추이 28 (2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
(2) 주요 키워드 29 2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2) 2014~2017년(410개) 32 (1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
(1) 기관별 현황 32 (2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
(2) 주요 키워드 35 2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2. 미국 R&D 예산 동향 38 2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2-1. 2018년 미국 주요 R&D 예산 현황 38 1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
1) 개요 38 2) 2018년도 미국 비국방 R&D 예산 현황 40 2-2. 미국 R&D 투자 동향 41 1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 41
2-2. 미국 R&D 투자 동향 ···································
2-2. 미국 R&D 투자 동향 ···································
2-3. 미국 R&D 투자 계획 ···································
1) 트럼프 행정부 2020 회계연도 R&D 예산 우선순위 발표 ·······45
2-4. 미국 R&D 대표기관 사례 분석 ···································
1) 연구재단(NSF)
2) 국립보건원(NIH) ····································

Ⅱ. 미국 에너지 하베스팅 기술개발 연구테마	·····55
NSF(National Science Foundation)	55
1-1. 2019년 현재 진행중인 프로젝트	
1) 집광에서의 에너지 및 전하이동을 위한 모델과 역학(2017-2020	
2) 2단계 산학협동연구센터 버지니아 공대: 에너지 하베스팅 물질 및	시스템 센터(CEHMS)
(2017–2022)	
3) 개선된 진동 에너지 하베스팅을 위한 결합된 기계-전기 시스템	
활용-1(2017-2020)	
4) 개선된 진동 에너지 하베스팅을 위한 결합된 기계-전기 시스템 활용-2(2017-2020) ··································	
5) 제트 엔진의 에너지 하베스팅 열차폐코팅을 위한 나노층 물질이	
이해 및 제어(2017-2020)	
6) 이기종 및 에너지 하베스팅 시스템을 위한 부호화 캐싱(2017-2	
7) 저비용, 무선, 에너지 하베스팅 환경 센서(2017-2019) ····································	
8) 2단계 산학협동연구센터 컬럼비아 대학교: 에너지 하베스팅 물질 및	
(2017-2022)	
9) 몸에서 그리드까지: 공학연구센터(ERC)와 학부생을 위한 연구경험(
나노스케일 하베스팅에서 스마트 그리드 기술까지의 에너지(2017-2	
10) 복합 다중모드 모션에서 활성 전기탄성물질의 3D 유체역학 이	
11) 불균일 촉매작용에서의 용매 효과에 대한 실험 및 이론 통합인	
12) 2단계 산학협동연구센터 미시간 대학교: 무인항공시스템 센터(
(2017-2022)	
13) 공중 풍력 에너지 하베스팅 어플리케이션에 따른 경제적 반복학습	
(2017-2020)	
14) 공중 풍력 에너지 하베스팅 어플리케이션에 따른 경제적 반복학습	
(2017-2020) ··································	
15) 반데르발스 이종물질(2017-2020)	
16) 수동 담수화 및 수중 하베스팅을 위한 인조 맹그로브 나무(20	
17) 회전 유동에서의 재층류화 및 난류 억제(2017-2020)	
18) 전기화학적 통문을 통해 조절된 강하게 상관된 산화물에서의 위신	
19) 마찰전기 나노발전기에서의 전기-기계 결합에 대한 기본원칙	
20) 삼림지대 생태계와 전통적 생계에 대한 환경적 변화 및 바이의	
충격(2017-2022)	
21) 생체모방 에너지 하베스팅, 수송, 관리를 위한 자가조립된 펩티	
고분자-1(2017-2021)	
22) 생체모방 에너지 하베스팅, 수송, 관리를 위한 자가조립된 펩티	
	- · - ·

	고분자-2(2017-2021)
23)	
20)	(2017–2020)
24)	
	(2017–2020)
25)	2단계 산학협동연구센터: 무인항공기시스템 센터(2017-2022)92
	원자층 반도체 헤테로 구조에서 중간층 전자 정공 쌍 증식의 광전자공학 조사
	(2017–2022)93
27)	나이, 자외선 광손상, 박테리아 성장에 따른 인간 피부의 멀티 스케일 붕괴 역학 이해
	(2017–2022)95
28)	엑시톤-플라스몬 에너지 전달의 나노스케일 시각화를 위한 근접장 영상(2017-2022) 96
29)	태양 에너지에 따른 수산화를 위한 반도체 표면 및 촉매 인터페이스 조사(2017-2020) 98
30)	공간적으로 고립된 금(Au) 및 백금(Pt) 나노입자에 따른 계층형 다공 TiO2를 이용한
	이산화탄소의 태양 유도 수소발생-1(2017-2020)100
31)	공간적으로 고립된 금(Au) 및 백금(Pt) 나노입자에 따른 계층형 다공 TiO2를 이용한
	이산화탄소의 태양 유도 수소발생-2(2017-2020)102
32)	유기반도체에서의 교환 메커니즘 및 엑시톤 이동(2017-2020)103
33)	제올라이트형 이미다졸레이트 프레임워크의 본질적인 광물리 및 광촉매 특성 정의
	(2017–2021)
34)	삼투 매개, 닫힌 셀 다공성 탄성 역학의 측정 및 분석(2017-2022)106
35)	Photon Funnels - 광집을 위한 근본적으로 새로운 개념-1(2017-2020) ······· 108
36)	Photon Funnels - 광집을 위한 근본적으로 새로운 개념-2(2017-2020) ················ 110
37)	온칩 마이크로파워 발전을 위한 집적회로 실리콘 나노와이어 열전 발전기(2017-2020) … 112
38)	예측 원자 시뮬레이션을 통한 유기-무기 하이브리드 페로브스카이트의 표면젖음 및
	증기 흡수 유도 퇴행 경로 이해(2017-2020)114
39)	하이브리드화 유도 나노도메인 접근을 통한 고유전율 완화형 강유전성 나노결정
	(2017–2020)
	플라스몬 금속 나노입자의 광-열 암모니아 합성(2017-2020)117
	보이지 않는 발광성 태양열 집광장치(2017-2020)118
	PI 활용 반도체 고분자에서 결함의 시퀀스 특정 배치(2017-2020) ··············120
	나노입자 자가 조립을 통한 나노복합재 구조 제어(2017-2022)121
44)	해양 파력 에너지에서 전기로의 신뢰성 있는 변환을 위한 통신, 네트워크, 분산 및
	계층 제어의 매끄러운 통합(2017-2020)
45)	Electron-Phonon-Wannier(EPW) 소프트웨어에 따른 물질 모델링의 영역 확장
\	(2017–2020)
	막단백질 연합 및 기능에 대한 막 환경의 역할 이해(2017-2020)126
47)	OP-분자 방사능 및 완화 과정(2017-2020) ·······127

48)	분자 및 물질에 대한 코히런트 분광법과 코히런트 제어(2017-2020)12	8
49)	물 처리 및 삼투 에너지 하베스팅을 위한 생체모방 탄소 나노튜브 포린막에서의	
	운반 이해(2017-2020)	0
50)	컴퓨터 시뮬레이션을 통한 금속-유기 프레임워크에서 수산화의 분자 특성화	
	(2018–2021)	2
51)	지연 네트워크에 대한 상호연결 시스템의 제어를 위한 볼록 프레임워크(2017-2020) … 13	4
52)	고 포화 전류에 따른 온칩 소형화 파워 인덕터를 위한 멀티 레이어 영구 자석	
	(2017–2020)	5
53)	MRI: 멀티 필드 공명초음파분광법 개발(2017-2020) ············13	
54)	트랜지스터 어플리케이션을 위한 베타-(AL, IN, GA)2O3의 유기금속화학증착(MOCVD)	
	성장(2017-2019) ······ 13	9
55)	TDM 태양전지: 차세대 페로브스카이드-실리콘 적층형 태양전지(2017-2019) ······ 14	0
56)		-
	합성(2017-2020) ······· 14	2
57)	어플리케이션 특정 전력 관리(2017-2022) 14	
58)	광합성 에너지 변환을 위한 새로운 단백질 구성-1(2017-2021)14	5
59)	광합성 에너지 변환을 위한 새로운 단백질 구성-2(2017-2021)14	6
60)	광합성 에너지 변환을 위한 새로운 단백질 구성-3(2017-2021)14	8
61)	웨어러블 어플리케이션을 위한 신규 삼차원 박막 열전 발전기(2017-2020)15	0
62)	고응답 광감지를 위한 다중 적재 하이브리드 그래핀과 양자점 필름(2017-2020) 15	2
63)	2D 압전 나노물질로부터의 나노미터 스케일 압전기, 변전 및 압전 효과(2017-2020) ···· 15	4
64)	태양광발전과 광촉매작용을 위한 염료감응 시스템에서의 계면 상호작용 및 전자 이동	
	(2017–2020)	5
65)	에너지 협력에 대한 게임이론 접근(2017-2019)15	7
66)	자발적인 주기적 박리를 통한 극단적인 기계적 불안정성의 역학(2017-2020) 15	8
	반데르발스 이중층에서의 상관 위상상태(2017-2022)15	
68)	플렉서블 열전기 및 전자공학을 위한 콜로이드 나노결정의 프린팅 및 인터페이스 가공	
	(2017–2022)	
69)	브리징 역학 및 전기화학: 배터리 물질에 대한 이론과 실험(2017-2020)16	2
70)	실시간 온보드 데이터 프로세싱을 위한 태양열로 움직이는 장기체공 무인기	
	(2017–2019)	
	네트워크화된 에너지 하베스팅 노드 간 통신 강건성 보장(2016-2019)16	5
72)	북극 카리부의 영양학적 풍경: 먹이를 찾는 특성 및 궤적에 대한 프로세스 단계	
	이해를 제공하는 관찰, 실험, 모델-1(2017-2019)	6
73)	북극 카리부의 영양학적 풍경: 먹이를 찾는 특성 및 궤적에 대한 프로세스 단계	
	이해를 제공하는 관찰, 실험, 모델-2(2017-2019)16	8
74)	북극 카리부의 영양학적 풍경: 먹이를 찾는 특성 및 궤적에 대한 프로세스 단계	

	이해를 제공하는 관찰, 실험, 모델-3(2017-2019)	170
75)	북극 카리부의 영양학적 풍경: 먹이를 찾는 특성 및 궤적에 대한 프로세스 단계	
	이해를 제공하는 관찰, 실험, 모델-4(2017-2019)	172
76)	북극 카리부의 영양학적 풍경: 먹이를 찾는 특성 및 궤적에 대한 프로세스 단계	
	이해를 제공하는 관찰, 실험, 모델-5(2017-2019)	174
77)	자율 수중 차량을 이용한 분산되고 효율적인 유비쿼터스 및 안전한 데이터 전달-	1
	(2017–2019)	176
78)	자율 수중 차량을 이용한 분산되고 효율적인 유비쿼터스 및 안전한 데이터 전달-	2
	(2017–2019)	178
79)	에너지 하베스팅을 위한 광촉매 물질의 고처리량 전기방사-2(2016-2019)	180
80)	에너지 하베스팅을 위한 광촉매 물질의 고처리량 전기방사-1(2015-2019)	181
81)		
	태양광발전(2016-2019)	183
82)	전기화학적으로 작동되는 기계 에너지 하베스팅-1(2016-2019)	184
83)	전기화학적으로 작동되는 기계 에너지 하베스팅-2(2016-2019)	186
84)	탈수아눌렌 재탐색(2016-2019)	187
85)		
	네트워크 설계-1(2016-2020)	188
86)	에너지 하베스팅이 '빅데이터'를 만났을 때: 스마트 에너지 하베스팅 무선 센서	
	네트워크 설계-2(2015-2020)	190
87)	에너지로서 폐열의 효율적인 하베스팅을 위한 열 포토닉스(2015-2020)	192
88)		
	발견 및 개발: 대왕조개로부터 배운다(2014-2019)	194
89)	2단계 산학협동연구센터 노스 캐롤라이나 대학교 샬럿 캠퍼스: 메타물질센터(CFM	
	(2016–2021)	196
90)	이차원 물질에서 표면 연구의 나노스코피(2016-2021)	198
91)	에너지 효율 디바이스를 위한 나노구조 설계(2016-2019)	199
92)	고성능 출력 정전기에너지 컨버터를 향해(2016-2019)	200
93)	남세균의 광합성 기구를 최적화하는 순응 반응: 환경생리학에서 생물 물리학까지	
	(2016–2021)	202
94)	액정 탄성중합체에서 전계/광계와 상호작용하는 역학에 대한 실험 및 이론 연구	
	(2016–2021)	203
95)	빼어난 미세 조작 및 조립을 향해(2016-2019)	204
96)	유기 전계 활성화 장치 기반 초고성능 광원(2016-2019)	206
97)	인터페이스가 풍부한 물질 설계를 위한 체계적인 데이터 분석 접근(2016-2021)	207
98)	산업 폐수로부터 귀중한 자원 재생하기(2016-2019)	208
99)	위상적으로 유도된 열 운반체에 따른 열이송 제어(2016-2020)	210

100)	격자 회로의 강비선형역학: 분석에서 응용까지(2016-2019)212
101)	CMOS 기술의 근본적인 열이온 한계를 극복하는 혁신적 설계 솔루션을 탐구하기
	위한 새로운 강유전체 장치에서의 네거티브 커패시턴스 활용(2016-2019) 213
102)	2단계 산학협동연구센터 클락슨 대학교: 메타물질센터(CFM)(2016-2021) ·········· 214
103)	초저전력회로 및 아키텍쳐를 위한 2D 전기변형 전계효과 트랜지스터(FET)(2016-2019) ···· 216
104)	수분 포집 및 응축을 위한 플렉서블 플래핑 표면(2016-2019)218
105)	결함, 토폴로지, 혼란을 통한 이차원 물질로의 기능성 설계(2016-2021) 220
106)	하드-소프트 나노안테나 시스템에 따른 표면 플라스몬 광학의 고전 및 양자 한계
	정의(2016-2019)
107)	나노결정 발광분자에 따른 광자 스펙트럼 분할(2016-2021) 224
108)	반도체 나노와이어에서의 전도성 변화 식별 및 제어-1(2016-2019) 226
109)	반도체 나노와이어에서의 전도성 변화 식별 및 제어-2(2016-2019) 227
110)	유기반도체에서의 막 형태학과 이온 운반 조사(2016-2019)228
111)	건물 풍하중에 대한 전산유체역학 예측에서의 불확실성 수량화(2016-2020) 230
112)	임프린트 및 변형 공학에 의한 3D 나노제조(3D NISE)(2016-2020) ············232
113)	거대 저자장 자기변형을 갖는 강 및 연성 철 기반 합금에서 자기 변형에 대한 구조
	순서 및 결함의 영향(2016-2019)
114)	분자 조립에서 에너지 전송의 초고속 나노스코피(2016-2021) 235
115)	고도로 극성 자가조립된 분자 압전 물질 설계(2016-2019)236
116)	Rydberg 원자를 포함하는 코히런트 프로세스의 관찰 및 제어(2016-2019) ········ 238
117)	남세균 생태학 및 진화의 맥락에서 모듈식 광보호 단백질의 조절 및 기능 특성화
	(2016–2019)
118)	핵자기공명분광기 확보(2016-2019)
119)	단일결정 반도체 필름 성장을 위해 나노제조된 표면 탬플릿 연구(2016-2019) … 242
120)	사물인터넷을 위한 신뢰성 있는 자가 동력 사물을 향해-1(2016-2019)243
121)	사물인터넷을 위한 신뢰성 있는 자가 동력 사물을 향해-2(2016-2019)244
122)	최적 공유 조건 아래의 지속 프로세싱을 통한 더 높은 효율 유기 태양전지
	(2016–2019)
123)	하이브리드 페로브스카이트 태양전지의 나노스케일 분광학: 현장 현미경 관찰을
	통한 디바이스 안정성에 대한 습도의 역할 해결(2016-2019)247
124)	플라스몬 향상된 광촉매작용을 위한 자외선-플라스몬 로듐 나노입자로부터의
	고에너지 고온 전자(2016-2019)
125)	유기반도체 나노와이어에서의 전하 광 생성 및 이송(2016-2021)250
126)	감열 기질을 위한 광분해 화학기상증착(CVD) 프로세스-1(2016-2019) ············· 252
127)	감열 기질을 위한 광분해 화학기상증착(CVD) 프로세스-2(2016-2019) ············ 253
128)	무선으로 충전되고 초음파로 네트워크화되는 삽입형 시스템을 위해(2016-2019) … 254
129)	인공적으로 비동질적인 자기 물질(2016-2019)256

130)	해양 풍력 기술을 위한 다중 위험요소 평가 및 위험도 기반 설계 개선(2016-2021) …	257
131)	생체분자를 통해 환경 지원 전자 수송을 위한 분자역학과 시간의존 양자 통계역학	을
	결합하는 알고리즘 개발(2016-2019)	258
132)	이원 및 삼원 금속간화합물의 열역학 측정(2016-2019)	260
133)	동력 자율 이동에 대한 바이오 활성화된 동작 물질(BEAM)(2016-2021)	262
134)	공간적으로 좁은 자가 조립 막대-코일 블록공중합체 및 Bolaamphiphiles에서	
	결합된 이온-전자 전도체(2016-2019)	264
135)	숲에서 육지 대기 변화에 대한 생물학적 다양성의 영향: 데이터를 가지고 이론과	-
	마주하기(2016-2021)	265
136)	블록공중합체의 3D 프린팅을 통한 광결정(2016-2019) ·····	267
137)	에너지 중립적인 거대한 대규모 무선 네트워크(2016-2019)	268
138)	칼코게나이드 및 관련 화합물의 고도로 제어된 에칭을 위한 유도결합 플라즈마	
	드라이 에칭 시스템 확보(2016-2019)	269
139)	유기반도체 물질에서 분해 과정의 동작 중 특성화(2016-2019)	270
140)	맞춤 조립을 위한 2D 나노물질의 비대칭 기능화(2016-2021) ·······	272
141)	CREST 재생에너지 및 고급 물질 센터(CREAM)(2016-2021) ·······	273
142)	무선으로 구동되는 사물인터넷을 위한 전하 재활용 기반 컴퓨팅 패러다임(2016-2019) …	275
143)	반도체 나노구조로 만들어진 물질에서 넓어지는 장애 및 앙상블 멈추기-1	
	(2016–2019)	276
144)	반도체 나노구조로 만들어진 물질에서 넓어지는 장애 및 앙상블 멈추기-2	
	(2016–2019)	278
145)	반도체 나노구조로 만들어진 물질에서 넓어지는 장애 및 앙상블 멈추기-3	
	(2016–2019)	280
146)	3D 전자 구조 및 기능물질과 나노구조의 반응 매핑을 위한 펨토초 각도분해	
	전자분광기 시스템 개발(2016-2020)	282
147)	무한제(cryogen-free) 최신형 초전도 양자 간섭 소자(SQUID) 자력계 확보(2016-2019) ···	284
148)	열광발전을 위한 내로우 밴드갭 다단 구조(2016-2019)	285
149)	거대 이방성에 따른 금속 유전체 멀티레이어 메타물질에서의 광조작(2016-2021) …	286
150)	가시광선 매개 촉매작용을 위한 카르바졸 다공성 유기 프레임워크의 광산화	
	환원반응 특성 조정(2016-2021)	288
151)	열복사 제어를 위한 2D 물질과 3D 나노구조의 결합(2016-2019) ······	289
152)	생물학적 유동에서의 액체-구조 상호작용(FSI)(2015-2020)	291
153)	무선 센서 네트워크를 위한 통합 데이터 및 에너지 엑세스(2015-2020)	292
154)	안정적인 염료감응태양전지를 위한 근적외선 흡수 염료(2015-2020)	293
155)	전자 및 구조적으로 민감한 분광법을 이용한 금속-유기 프레임워크의 분자 단위	
	정보 수확(2015-2020)	294
156)	무선 의학 모니터링을 위한 저전력 트랜시버 설계 방법(2015-2020)	296

157) 물질 연구 및 교육을 위한 펜실베니아 대학교-푸에르토리코 대학교 파트너십	
(2015–2020)	97
158) 배터리 없는 저비용, 무보수, 장기 임베디드 센싱 활성화(2015-2020)2	99
159) 반응성 분지화된 믹토암과 이온액체물질(2015-2019)	00
160) 강유전성 구조에서의 성극 및 회전 현상(P-SPINS)(2014-2020)3	01
161) 원계 및 근계로부터의 방사선 전송 제어에서 자기공명에 대한 코히런트 이해	
(2015–2020)	02
162) 이질성 극복하기: ppm 및 ppb 다분산성에 따른 초단순분산 반도체형 탄소	
(2014–2019)	04
163) 2D 물질 너머의 반데르발스 에피텍셜 헤테로 구조(2014-2019) ················ 3	05
164) 연소 모니터링 및 제어를 위한 에너지 하베스팅 나노로드 향상된 MEMS 온도	
둔감 가스 센서(2014-2019) ······· 3	07
165) 건조 환경의 지속 가능한 관리를 위한 스케일러블 센서 기반시설(2014-2019)···· 3	08
166) 반도체/금속 하이브리드 나노 시스템에서의 플라스몬 매개 광흡수 및 운반체	
재결합 역학(2014-2019)	10
167) 재료 과학을 위한 CSUSB 센터(2014-2019) ····································	12
168) 산학협동연구센터: 임베디드 시스템을 위한 컨소시엄 - 2단계(2014-2019)3	
1-2. 2018년 현재 종료된 프로젝트3	
1) 에너지 및 동력 시스템(2017-2018)3	
2) 에너지 빔형성을 통해 무선으로 충전되는 휴대용 배터리(2017-2018)3	17
3) 나노캐비티 향상에 따른 수직 운반체 운반 이차원 광-하베스팅 장치(2017-2018) 3	19
4) LNG 재가스화로부터의 냉열 회복을 통해 탄소 중립적 전기 생산을 위한 통합 열전	
열교환기(ITEG-HX)(2017-2018) ····································	
5) 유비쿼터스 무선 동력을 위한 표유 자계 포획(2017-2018)3	22
6) 마이크로 디바이스에서의 특별한 성능 활성화를 위한 스마트 물질과	
FerroElectret Nanogenerator(FENG)의 결합(2017-2018)3	
7) 부분적으로 포화된 점토물계의 분자 역학 모델링(2017-2018)	
8) 비용 효율적인 멀티정션 태양광발전을 위한 유한 흡수 대역폭 물질(2017-2018) 3.	27
9) 저전력 백엔드에 따른 HDR 시스템 보호를 위한 밀리미터파 페이즈드어레이의	
새로운 등급-2(2017-2018)	28
10) 저전력 백엔드에 따른 HDR 시스템 보호를 위한 밀리미터파 페이즈드어레이의	
새로운 등급-1(2015-2018)	
11) 물질 특성화를 위한 극소각 - 광각 듀얼소스 엑스레이 산란 기구 확보(2017-2018) 3	
12) 에너지 하베스팅 노드와의 통신-1(2015-2018)	
13) 에너지 하베스팅 노드와의 통신-2(2015-2018)	35
14) 효율적인 전기 에너지 하베스팅을 향한 미생물 전기화학 활동의 시스템 모델링 및	0.2
제어-1(2015-2018) ······· 3.	36

15)	효율적인 전기 에너지 하베스팅을 향한 미생물 전기화학 활동의 시스템 모델링 및
	제어-2(2015-2018)
16)	원격 센서 시스템을 위한 해양 에너지 하베스팅(2015-2018)340
17)	지속 가능한 스팟 냉방 및 에너지 관리를 위한 신규 아키텍쳐 에너지 하베스팅
	(2015–2018)
18)	연소 모니터링 및 제어를 위한 에너지 하베스팅 나노로드 향상된 MEMS 온도 둔감
	가스 센서-1(2015-2018)344
19)	연소 모니터링 및 제어를 위한 에너지 하베스팅 나노로드 향상된 MEMS 온도 둔감
	가스 센서-2(2015-2018)346
20)	연소 모니터링 및 제어를 위한 에너지 하베스팅 나노로드 향상된 MEMS 온도 둔감
	가스 센서-3(2015-2018)348
21)	웨어러블 컴퓨팅을 위한 CSR 초저전력 아키텍처(2016-2018) ····································
22)	단분자층 헤테로 구조의 특성 재단: 에피택셜 성장과 도핑-2(2016-2018)351
23)	단분자층 헤테로구조의 특성 재단: 에피텍셜 성장과 도핑-1(2015-2018)352
24)	진동 페로-나노유체를 통한 전기 발전 및 향상된 열전달-2(2016-2018)354
25)	진동 페로-나노유체를 통한 전기 발전 및 향상된 열전달-1(2014-2017)355
26)	합리적 설계에 따른 단백질 매체를 통한 에너지 변환의 흐름 제어-2(2016-2018) … 357
27)	합리적 설계에 따른 단백질 매체를 통한 에너지 변환의 흐름 제어-1(2015-2018) … 358
28)	그린 모바일 크라우드 센싱의 모델링 및 분석(2016-2018)359
29)	동하중 및 에너지 효용 하의 무선 감지 시스템을 위한 하드웨어 및 소프트웨어
	아키텍처(2016-2018)
30)	Gemini Dicarboxylate Lyotropic 액정 구조 및 안정성에 대한 소형 분자 부가물의
	영향-1(2015-2018)····································
31)	Gemini Dicarboxylate Lyotropic 액정 구조 및 안정성에 대한 소형 분자 부가물의
	영향-2(2015-2018)
32)	탄성 메타물질에서의 전력 흐름: 구조적 강도 분석(2016-2018)365
33)	하이퍼 감지의 환경적으로 제어된 풍동 개발(2016-2018)366
34)	고급 하이브리드 압전 에너지 하베스터(2016-2018) 368
35)	나노전기기계 시스템에서의 고유 및 외적 손실(2015-2018)369
36)	금속-유기의 조직된 조립을 결합시키는 스마트 인터페이스의 합리적 설계 활성화
	(2015–2018)
37)	유리 및 고분자 기질에 대한 강유전체 박막의 Far-From-Equilibrium 프로세싱
	(2015–2018)
38)	진동 수중익선 터빈 배열에서의 후류 매개 결합(2015-2018)373
39)	원통 셀의 탄성 좌굴후(postbucking) 반응 재단:
	기계적 시스템에서의 불안정성 활용을 위한 루트(2015-2018)375
40)	극단적인 환경에 적용하기 위한 내화 금속 도핑된 갈륨 산화물 센서(2015-2018) 376

41)	생물학에서 메커니즘까지: 운동 시스템에서의 컴플라이언스 활용-1(2015-2018) … 378
42)	생물학에서 메커니즘까지: 운동 시스템에서의 컴플라이언스 활용-2(2015-2018) … 380
43)	양자점 태양전지 및 적외선 감지기에서의 역학(2015-2018)
44)	변형으로부터의 전기 생성: 원자에서 장치까지 변전효과(Flexoelectricity)의
	멀티스케일 모델링 및 특성화(2015-2018)
45)	에너지 하베스팅 비행 적용에 따른 자동 조정식 주기적 최적 제어-1(2015-2018) ···· 385
46)	에너지 하베스팅 비행 적용에 따른 자동 조정식 주기적 최적 제어-2(2015-2018) … 386
47)	계층 분자 물질의 컴퓨터 지원 설계(2015-2018)
48)	깊은 서브파장 열복사 로컬라이제이션 및 전송(2015-2018)····································
49)	이기종 네트워크에서 스마트 그리드로 동작하는 그린 커뮤니케이션-1(2015-2018) … 390
50)	이기종 네트워크에서 스마트 그리드로 동작하는 그린 커뮤니케이션-2(2015-2018) … 391
51)	동적 단절의 역학(2015-2018)
52)	친환경 건물에서 향상된 햇빛과 열하중 관리를 위한 스마트 채광창 기술-1
	(2015–2018)
53)	친환경 건물에서 향상된 햇빛과 열하중 관리를 위한 스마트 채광창 기술-2
	(2015–2018)
54)	공액고분자 나노입자에서의 증폭된 형광공명에너지전이 활용(2015-2018)398
55)	가동 중단 상황에 대응하는 풍력단지 전력 보호를 위한 센서 데이터 분석
	(2015–2018)
56)	유기 광전자 장치에서의 향상된 기능성을 위한 인터페이셜 게이트 가공(2015-2018) … 401
57)	닫힌 캐비티에 대한 음향 기반 구조 건전도 모니터링과 풍력발전기 블레이드에의 적용
	(2015–2018)
58)	비결정성 강자성 형상 기억 합금: 장애, 위상전이, 다중물리학 결합 사이의 상호작용
	(2015–2018)
59)	박막 및 포토닉 장치에서의 고효율 광포획을 위한 나노구조화된 전도성 산화주석-1
	(2015–2018)
60)	박막 및 포토닉 장치에서의 고효율 광포획을 위한 나노구조화된 전도성 산화주석-2
	(2015–2018)
	지속 가능한 무 배터리 다중 홉 감지 네트워크 설계(2015-2018)409
	그린 병렬 언어 시스템(2015-2018)
	섬아연광형 흡수장치에서의 결함 공학(2015-2018)
	밴드갭 공학을 통해 반도체에 전기적으로 결합된 다기능 산화물(2015-2018) 414
	다상 흐름 시뮬레이션을 위한 불확실성 수량화 프레임워크(2015-2018)
	큰 분자 및 나노결정에서의 여기상태에 대한 Bethe-Salpeter 확률적 접근(2015-2018) ···· 416
	고립 아토초 펄스에 따른 분자 및 물질에서의 상관 전자 역학 연구(2015-2018) 418
	계층적으로 서열화된 전자막의 나노제조를 위한 콜로이드의 지시 조립(2015-2018) … 419
69)	나노구조화된 공액고분자/금속 인터페이스의 합성, 조립, 일렉트로크로믹 습성(2015-2018) … 421

70)	에너지 협동에 따른 재충전 가능한 네트워크-1(2015-2018)	422
71)	에너지 협동에 따른 재충전 가능한 네트워크-2(2015-2018)	424
72)	적분불가 격자에서의 비선형파(2015-2018)	425
73)	3D 온칩 하이브리드 마이크로파워(2015-2018) ······	426
74)	원자층증착에 의해 조정 가능한 플라스몬 나노구조(2015-2018)	428
75)	상변환하는 세포 물질(2015-2018)	429
76)	버네사이트 구조에서 공공(vacancy) 및 Mn(III) 집중을 제어하는 지구화학 공정	
	(2015–2018)	430
77)	광화학 바이오합성을 위한 무기 생물 하이브리드 시스템(2015-2018)	432
78)	초소수성 표면 활성화된 미세유체 에너지 변환(2015-2018)	434
79)	극단적인 작동 및 조정되는 특성에 따른 전기활성 그래핀-고분자 시스템(2014-2018) …	436
80)	단분자층 헤테로구조: Beyond-CMOS 디바이스에 대한 에피택시(2014-2018)	437
81)	단일 이온 전도성 이오노머의 전도 및 기계적 특성(2014-2018)	439
82)	파랑 에너지와 파워 그리드: 최적화 및 통합(2015-2018)	440
83)	재생 에너지에 따른 그린 베이스 스테이션의 에너지 효율적 작동 및 제어:	
	실행을 위한 이론(2014-2018)	442
84)	자가 동력 바이오센싱 마이크로시스템(2014-2018)	443
85)	신경과학 및 심장학 어플리케이션을 위한 서브파장 탐침의 미드필드 무선 동력	
	(2014–2018)	444
86)	해양 파력 에너지 하베스팅을 위한 에너지 효율적이고 신뢰성 있는 모션 메커니즘	<u>-</u> 1
	(2014–2017)	446
87)	해양 파력 에너지 하베스팅을 위한 에너지 효율적이고 신뢰성 있는 모션 메커니즘	-2
	(2014–2017)	447
88)	다중모드 주변 에너지 하베스팅을 위한 통합 구조(2014-2017)	448
89)	에너지 하베스팅에 의해 구동되는 장거리 대양 통신 링크(2015-2017)	450
90)	에너지 하베스팅 파워 임베디드 시스템에 대한 효율적인 비휘발성 프로세서 활성	화
	(2015–2017)	
91)	열압전 변환을 통한 에너지 하베스팅-1(2015-2017)	452
92)	열압전 변환을 통한 에너지 하베스팅-2(2015-2017)	454
93)	열압전 변환을 통한 에너지 하베스팅-3(2016-2017)	456
94)	모바일 기기를 위한 강건 실내 위치인식 시스템(2017-2017)	458
95)	기계 에너지 하베스팅을 위한 신축성 압전학의 프랙털 역학(2014-2017)	459
96)	태양 에너지 하베스팅과 저장을 위한 계층적 금속-유기 프레임워크 조립	
	(2014–2017)	
	에너지 하베스팅을 위한 용액 가공된 유기농 래칫(2014-2017)	
98)	에너지 하베스팅 무선 통신의 토대-1(2014-2017)	463
99)	에너지 하베스팅 무선 통신의 토대-2(2014-2017)	464

100)	수동형 방사능 합성물질(2016-2017)	465
101)	동력 발전을 위한 고온 온도계 물질(2016-2017)	467
102)	직접 기입 레이저 리소그래피 시스템 확보(2016-2017)	468
103)	뇌이랑 신경 네트워크 및 매장 내 리테일 마케팅에 대한 뇌이랑 신경 네트워크의	4
	적용을 활용하는 대규모 행동 분석(2016-2017)	470
104)	파워 스마트 의류에 대한 압전 섬유의 생산 최적화(2016-2017)	471
105)	라마르 대학교 투과전자현미경(TEM) 확보(2016-2017)	472
106)	페이퍼트로닉스 워크숍: 21세기를 위한 페이퍼 기반 전자공학(2016년 9월 12-14일 웨스틴	
	알링턴 게이트웨이 호텔; 알링턴, 버지니아)(2016-2017)	474
107)	미니 노치 터빈(MINT)(2015-2017) ·····	476
108)	그래핀 이중층에서의 층 분해 커패시턴스(2016-2017)	477
109)	자가 동력 이질 세포 네트워크를 향해(2015-2017)	478
110)	부러지는 껍데기: 불안정성을 통한 에너지 하베스트에 대한 기하학, 역학, 물질의	
	결합(2014-2017)	480
111)	고효율 에너지 변환을 위한 나노구조 물질에서의 초전 효과 향상-1(2015-2017) …	482
112)	고효율 에너지 변환을 위한 나노구조 물질에서의 초전 효과 향상-2(2015-2017) …	484
113)	고효율 에너지 변환을 위한 나노구조 물질에서의 초전 효과 향상-3(2015-2017) …	486
114)	자가 동력 센서 기반 모니터링을 통한 지속 가능한 물 공급 활성화(2015-2017)	488
115)	변형 공학을 통한 마이크로 및 나노스케일 박막 초전 물질(2015-2017)	489
116)	나노제조와 나노공학 연구 및 교육을 위한 전자빔 리소그래피 시스템 확보	
	(2015–2017)	491
117)	계층 아키텍처와 높은 최적수치에 따른 신규 유기 열전 합성물 탐구(2015-2017) …	493
118)	이중안정 구조 역학 기반 저공진주파수 에너지 스캐빈징(2014-2017)	494
119)	자가 조직하는 가상 기질: 구조 건전도 모니터링을 위한 모듈식 컴퓨팅 및 통신	
	아키텍처 탐구(2014-2017)	496
120)	콜로이드 공정을 통한 저차원 페로브스카이트와 그 제어에 있어 극 서열화(2013-2017) …	498
121)	섬유매질에서 에어로졸 액적 이동-1(2014-2017)	500
122)	섬유매질에서 에어로졸 액적 이동-2(2014-2017)	501
123)	바이오연료를 위한 고세균 지질 및 단백질 기반 인공 광합성-1(2014-2017)	502
124)	바이오연료를 위한 고세균 지질 및 단백질 기반 인공 광합성-2(2014-2017)	503
125)	바이오연료를 위한 고세균 지질 및 단백질 기반 인공 광합성-3(2014-2017)	504
126)	기능적 하이브리드 생물/무생물 물질(2014-2017)	506
127)	집광 나노카본-감광제 하이브리드(2014-2017)	507
128)	강하게 결합된 하이브리드 유기-무기 시스템에서의 에너지 전달-1(2014-2017) …	508
129)	강하게 결합된 하이브리드 유기-무기 시스템에서의 에너지 전달-2(2014-2017) …	509
130)	루비스코 독립 연료를 위한 플러그 앤 플레이 광합성-1(2014-2017)	510
131)	루비스코 독립 연료를 위한 플러그 앤 플레이 광합성-2(2014-2017)	512

132)	루비스코 독립 연료를 위한 플러그 앤 플레이 광합성-3(2014-2017)	514
133)	루비스코 독립 연료를 위한 플러그 앤 플레이 광합성-4(2014-2017)	516
134)	조류 기반 친자원적인 위생(ARPS) 시스템 - 폐수 기반시설 지속 가능성을	
	개선하기 위한 통합 모델링 프레임워크(2014-2017)	518
135)	MRI: 물질의 나노스케일 특성을 평가하기 위한 연구용 원자력현미경(AFM) 확!	己
	(2014-2017)	520
136)	화학 반응역학의 다차원 펨토초 연구(2014-2017)	521
137)	개선된 터빈 성능 및 풍력단지 효율성을 위한 혁신적인 듀얼 로터 풍력 터빈(DRWT)
	설계(2014-2017)	522
138)	에너지 하베스팅 물질을 위한 신규 전원으로서 시멘트(2014-2017)	524
139)	자기형상기억합금에서의 도메인 메커니즘(2014-2017)	526
140)	전파 표면 플라스몬에 의한 박막 태양전지에서 향상된 광자-전자 전환(2014-2017) …	528
141)	손가락 감각을 유지하기 위한 무선 센서-뇌 인터페이스(2014-2017)	530
142)	변형 공학을 통한 강유전성 물질의 습성 제어(2014-2017)	532
143)	건강과 환경을 연결하는 웨어러블 나노디바이스: 공학 및 컴퓨터 공학 현장에서	의
	교사를 위한 연구경험(RET)(2014-2017) ·····	534
144)	분자 방사성 및 완화 프로세스(2014-2017)	536
145)	플렉서블 활성 합성물의 시간 의존 습성-1(2014-2017)	538
146)	플렉서블 활성 합성물의 시간 의존 습성-2(2014-2017)	539
147)	점탄성 메타합성물의 역학과 동역학(2014-2017)	540
148)	산화 환원반응 화학 및 바이오센서를 위한 광에너지 하베스팅 주제의 미국-헝기	-리
	연구(2014-2017)	542
149)	미래 산업과 의학을 위한 나노결정의 지속적이고 경제적인 제조(2014-2017)	543
150)	디바이스에서의 나노스케일 열 프로세스(2014-2017)	544
151)	위상 물리학과 광물질 상호작용: Floquet 위상학적 절연체부터 태양전지까지(2014-2017) ····	546
152)	작은 도구를 위한 바이오물질(2014-2017)	548
153)	비결정성 금속의 고속 주조 중 나노구조 조작(2014-2017)	550
154)	열전 발전을 위한 스핀 제벡 장치(2014-2017)	551
155)	알래스카에서 조개류 양식의 지속 가능성 향상하기: 알렉산드리움 적조와 그 사	회
	문화적 영향의 생태학적 고찰(2014-2017)	552
156)	내부 비선형 발진기를 갖는 각진 물체의 역학:	
	난류 유발 진동 억제, 부분적 후류 안정화, 항력 감소(2014-2017)	554
157)	3D 박막/형상기억 고분자 시스템의 좌굴 역학에 대한 이론 및 실험 연구	
	(2014–2017)	555
158)	에너지 인지 스파스 감지(2014-2017)	557
159)	메타물질 캐비티에 기반한 초광대역폭을 가진 조정 가능 적외선 완전 흡수기 및	
	열 방출기(2014-2017)	558

160)	지속 가능한 무선 네트워크를 위한 시간 동기화 개선(2014-2017)	• 560
161)	신규 강유전성 크리스털 고분자에 대한 결정 동형화 및 나노도메인 접근	
	(2014–2017)	561
162)	열, 전하, 회전: 강자성 막과 나노구조에서의 열 스핀트로닉스(2014-2017)	563
163)	에너지 하베스팅과 감지 어플리케이션을 위한 렉테나 개발(2014-2016)	564
164)	저비용, 무선, 에너지 하베스팅 환경 센서(2016-2016)	566
165)	소단위 축방향 영구자석 발전기의 프로토타입 및 제조(2016-2016)	567
166)	임베디드 및 삽입 가능한 구조 건전도 모니터링을 위한 자가 동력 마이크로 센	싱의
	통합 연구 및 교육(2014-2016)	568
167)	나노스케일에 대한 여자 역학의 시간-영역 원자 이론 및 시뮬레이션(2014-2016) ·	569
168)	EAGER: 향상된 열전물질 성능을 위한 결함의 역할 활용(2015-2016)	570
169)	희석 재배로부터 나온 조류 바이오매스를 위한 저비용 방법(2015-2016)	571
170)	석유 및 가스 현장 탐사를 위한 자가 동력 듀얼모드 압전공명 압력/온도 센서	
	(2014–2016)	· 573
171)	성층 유체에서의 클로킹(2014-2016)	574
172)	투명한 분자 광발전 디바이스(2014-2016)	• 575
173)	사물인터넷을 위한 무선 무배터리 시스템온칩 플랫폼-1(2014-2016)	. 576
174)	사물인터넷을 위한 무선 무배터리 시스템온칩 플랫폼-2(2014-2016)	• 578
175)	고효율 박막 실리콘 태양전지를 위한 통합된 광자 및 전자 하베스팅 방법	
	(2014–2016)	· 580
176)	지속 가능한 농업과 친환경 에너지 프로젝트(2014-2016)	· 582
177)	하천 전기 에너지 장치(2014-2016)	· 583
178)	폐수 재사용 및 에너지 생산을 위한 미생물 전기 담수화(2014-2016)	584
179)	유기 고분자 기반 태양전지에서의 FRET 사용 및 이해(2014-2016)	- 585
180)	건축학적 열에너지 하베스팅을 위한 특성화 및 모델링(2014-2015)	- 586
181)	친환경 빌딩 어플리케이션을 위한 유체 에너지 하베스터(2015-2015)	· 587
182)	nFE 기술을 위한 상업화 양상 연구(2015-2015)	· 588
183)	전기발전 동조질량감쇠기를 이용한 고층 빌딩의 진동 제어(2014-2015)	• 590
184)	하이브리드 금속/CNT 나노와이어의 광발전 지속 전기화학 합성(2014-2015) ····	• 591
185)	광 및 열 쌍곡선 메타필름 패턴의 흡수 가공(2014-2015)	• 593
186)	2014년 국립 공학 아카데미 공학 심포지엄: 미국, 일본-아메리카, EU-미국	
	(2014–2015)	
187)	분자 포토닉 물질(2014-2015)	• 595
188)	유도결합 플라즈마(ICP)에 따른 플라즈마 향상된 화학증착법(PECVD) 도구	
	(2014–2015)	
189)	압전 세라믹에서의 시분해 구조-특성 관계(2014-2015)	. 598
190)	군락 동화력 및 작물 수확량 잠재력을 증가시키기 위한 안테나 크기 조작	

	(2014–2015)
191	l) 3D 통합 하이브리드 에너지 하베스팅과 저장 장치(2014-2014)601
192	2) 폐열의 지속 가능한 열-전기 전환(2014-2015)602
193	3) 친환경 에너지 발전을 위한 해양 파력과 해류로부터의 초고에너지 및 출력 밀도에
	따른 에너지 하베스팅 시스템(2014-2014)603
194	4) 지구적으로 조리과정에서 발생하는 연기 문제에 대한 해결: 저장형 태양 스토브 개발
	(2014–2014)
195	5) 파이프라인 모니터링을 위한 자가 동력 무선 누설검출 센서(2014-2014)605
196	5) 물질 연구 및 개발을 위한 데이터 집합 및 마이닝 플랫폼(2014-2014)606
197	7) 고급 하이브리드 압전 에너지 하베스터(2014-2014)607
2. NIFA	(National Institute of Food and Agriculture) 608
2-1.	2019년 현재 진행중인 프로젝트
1)	광합성 에너지 및 탄소 저장을 위한 석유 산출 담뱃잎 속의 대사 유동(2017-2020) \cdots 608
2)	바이오에너지 생산에서 개인 토지소유자를 사로잡기: 생물 다양성 및 생태계 서비스를
	향상시키는 와중에 지속 가능한 농업 생태계를 촉진하는 해법 찾기(2017-2021) 609
2-2.	2018년 현재 종료된 프로젝트611
1)	식재료로서 귀뚜라미 사육의 비용 절감, 효율성 및 생산성 개선(2016-2018)611
2)	희석 재배된 조류 부유물로부터의 지질 수집을 위한 파열 전송/접합 여과 기술
	(2016–2018)
3)	고가치 공산품을 위한 섬질녹조류 재배(2015-2016)614
4)	건조한 해변 지역에서 향상된 안개 하베스팅을 위한 초소수성 코팅(2013-2016) … 617
3. 기타	연구기관619
3-1.	2019년 현재 진행중인 프로젝트(추진기관별)619
1)	수확, 공정, 운용의 개선을 통한 품질, 유용성, 지속가능성 향상 및 서구와 장섬유
	목화의 환경적 영향(2015-2020)619
2)	사탕수수, 단수수, 에너지 사탕무의 설탕, 고급 바이오 연료, 바이오 제품으로의 상업용
	전환에 있어 성장 및 수익성을 활성화 하는 기술 개발(2014-2019)621
3)	신경 앙상블 활동의 대규모 체내 모니터링을 위한 자가 동력 감지 및 데이터 로깅
	(2017–2019)
4)	유연한 3D 다공박막을 이용한 삽입형 심장 동력 생성-1(2016-2021) ·············624
5)	유연한 3D 다공박막을 이용한 삽입형 심장 동력 생성-2(2016-2021) ·····················625
6)	심근 움직임으로부터의 무전극유도 심박 조율기 구동을 위한 에너지 하베스터 개발
	(2017–2019)
7)	체내 바이오-기계 에너지 하베스팅을 위한 막 나노발전기-1(2016-2020)628
8)	체내 바이오-기계 에너지 하베스팅을 위한 막 나노발전기-2(2016-2020)630

9) 목제 시장과 교역-1(2014-2019)632
10) 목제 시장과 교역-2(2014-2019)635
11) 결장직장암 조기 감지 및 치료를 위한 나노 세라노스틱스-4(2013-2019)638
3-2. 2018년 현재 종료된 프로젝트(추진기관별)640
1) 통합 생물학 코어(MYNATT)-3(2017-2018) ····································
2) 통합 생물학 코어(MYNATT)-2(2016-2017)641
3) 통합 생물학 코어(MYNATT)-1(2015-2016) ····································
4) KOMP 쥐의 골격 표현형-3(2013-2018) ····································
5) KOMP 쥐의 골격 표현형-2(2013-2018) ····································
6) KOMP 쥐의 골격 표현형-1(2013-2016) ····································
7) 심박조율기 및 기타 이식형 장치를 위한 고에너지밀도를 가지며 오래 가는 베타파워
전지-1(2015-2018)
8) 심박조율기 및 기타 이식형 장치를 위한 고에너지밀도를 가지며 오래 가는 베타파워
전지-2(2015-2016)
9) 골격근에서 영양 감지 및 연료 이용의 일주기 제어-1(2015-2018)654
10) 골격근에서 영양 감지 및 연료 이용의 일주기 제어-2(2015-2018)655
11) 골격근에서 영양 감지 및 연료 이용의 일주기 제어-3(2015-2018)656
12) POMC 신경세포에 대한 키스펩틴 시냅스 투입(2014-2015)657
13) 구조적 목재 시스템, 특히 시스템 및 에너지 성능과 설계에 대한 정보 개발-1
(2012–2017)
14) 구조적 목재 시스템, 특히 시스템 및 에너지 성능과 설계에 대한 정보 개발-2
(2012–2017)
15) 장 미생물 및 비만 조절에서 살균 펩티드글리칸 인지 단백질의 역할(2015-2016) 660
16) 신규 동력 인출 메커니즘을 갖는 해양 파력 에너지 하베스터(2014-2016)662
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다.
 17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
 17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016) 663 18) 행성 간 유인 임무는 귀환 능력이 확실해질 때에서야 바람직할 것이다.(2013-2017) 664
 17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016) 663 18) 행성 간 유인 임무는 귀환 능력이 확실해질 때에서야 바람직할 것이다.(2013-2017) 664 19) 통합 생물학 코어/Thomas W. Gettys(2014-2015)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016) 663 18) 행성 간 유인 임무는 귀환 능력이 확실해질 때에서야 바람직할 것이다.(2013-2017) 664 19) 통합 생물학 코어/Thomas W. Gettys(2014-2015) 665 20) 종양 모니터링을 위한 INT 무선 삽입형 전자 바이오센서-4(2014-2018) 666 21) 종양 모니터링을 위한 INT 무선 삽입형 전자 바이오센서-3(2014-2018) 667 22) 종양 모니터링을 위한 INT 무선 삽입형 전자 바이오센서-2(2014-2018) 669 23) 종양 모니터링을 위한 INT 무선 삽입형 전자 바이오센서-1(2014-2018) 670 24) 결장직장암 조기 감지 및 치료를 위한 나노 세라노스틱스-3(2013-2018) 672
17) 제안된 프로그램에 따라 UTRC는 1. 다른 제안 파트너들과 함께 에너지 하베스팅과 고체상태에너지 변환 옵션의 식별을 위한 이니셜 브레인스토밍/관념화 세션에 참여해야 한다. 2. 시스템 레벨 평가를 위한 시스템/트레이드 연구을 수행해야 한다.(2015-2016)

28) 결장직장암에서 미생물 마커의 재생력 및 유효성-1(2014-2015)	····· 678
--	-----------

│. 총론	27
	조사항목 개요와 예시 ···································
<翌1-2>	미국의 연간 에너지 하베스팅 연구 프로젝트 수 추이(2004~2017) 28
<班1-3>	기관별 에너지 하베스팅 연구 프로젝트 집행 현황(2004~2017)(단위 : 걔, 달러) 28
<翌1-4>	집행 기관별 에너지 하베스팅 연구 프로젝트 현황(2014~2017)(단위 : 개, 달러) 32
<翌1-5>	담당 기관별 에너지 하베스팅 연구 프로젝트 현황(2014~2017)(단위 : 개, 달러) ····· 32
<翌1-6>	수행 기관별 에너지 하베스팅 연구 프로젝트 현황(2014~2017)(단위 : 개, 달러) 33
<班1-7>	미국 R&D 예산 개요 (단위 : 백만 달러) 38
<翌1-8>	미국 R&D 예산 세부 내용 (단위 : 백만 달러) ·············39
<翌1-9>	주요 비국방 R&D부처의 연구개발단계별 투자 현황 (단위 : 백만 달러)40
<班1-10>	> 섹터와 투자 주체를 기준으로 한 2015년 미국 R&D 투자 (단위 : 십억 달러) ···· 44
<班1-11>	연구재단 연구개발예산 현황 (단위 : 백만 달러) ···································
<班1-12>	 국립보건원 연구개발예산 현황 (단위 : 백만 달러) ···································
<班1-13>	> 국립보건원 연구지원 형태별 연구개발예산 현황 (단위 : 백만 달러, %) 49
<班1-14>	› 국립보건원 주요 연구지원 프로그램 유형 ·······50
비미국	에너지 하베스팅 기술개발 연구테마

. 총론 ·······	.97
	-Z I
(그림1-1> 주별 에너지 하베스팅 연구 프로젝트 수 그래픽(2004~2017)	· 29
(그림1-2> 2004~2017년 에너지 하베스팅 연구과제 주요 키워드	. 30
(그림1-3> 2014~2017년 에너지 하베스팅 연구 프로젝트 주요 키워드	· 36
(그림1-4> 2017년 미국 과학 기술 분야별 연방 정부 지출 분야	• 41
(그림1-5> 미국의 투자 출처에 따른 지출 추이(1953~2015) (단위 : 십억 달러)	• 42
(그림1-6> 미국 R&D 투자액 중 연방과 기업의 비율 추이(1953~2015) ·······	• 42
(그림1-7> 연방의 예산 기능을 통한 R&D 투자 추이(1955~2017) (단위 : 십억 달러) ·····	• 43
(그림1-8> 국립보건원 연구 지원 프로그램 구조	• 49
Ⅰ. 미국 에너지 하베스팅 기술개발 연구테마 ····································	-55
··	