목 차

│. 총론	25
1. 조사개요	25
1-1. 조사대상과 방법, 조사내용	25
1) 조사대상	25
2) 조사방법(DB, 검색어, 검색기간) ······	25
3) 조사내용(조사 항목)	25
1-2. 미국의 컴퓨터 비전 연구 동향과 현황	26
1) 2006~2017년(1,494개) ·····	
(1) 기관별 현황 및 추이	
(2) 주요 키워드	
2) 2016~2017년(409개)	30
(1) 기관별 현황	30
(2) 주요 키워드	33
2. 미국 R&D 예산 동향 ···································	25
2-1. 2018년 미국 주요 R&D 예산 현황 ···································	
2-1. 2016년 미국 구요 K&D 예산 원왕 1) 개요 ···································	
1) 개요	
2-2. 미국 R&D 투자 동향	
1) '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 ···········	
2) 미국 R&D 투자 트렌드 및 현황 분석 ······	
2-3. 미국 R&D 투자 계획 ···································	
1) 트럼프 행정부 2020 회계연도 R&D 예산 우선순위 발표 ···································	
2-4. 미국 R&D 대표기관 사례 분석	
1) 연구재단(NSF) ·····	
2) 국립보건원(NIH) ······	45

Ⅱ. 미국 컴퓨터비전 기술개발 연구테마	······51
NSF(National Science Foundation)	51
1-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)	51
1) 컴퓨터 비전 기반 사전 수확량 지도화(2017-2018)	
2) 사물인터넷에서의 스마트 컴퓨터 비전을 위한 효율적인 커스텀 플랫폼(2017-2018	
3) 저전력 디바이스를 위한 컴퓨터 비전의 진화, 전력 장벽 및 컴퓨터 복잡성 부수	
(2017–2020)	54
4) 최적화, 조합론, 컴퓨터 비전에서 제곱 다항식의 합(2017-2020)	55
5) 컴퓨터 비전을 이용한 사과 수확 지도화(2017-2018)	56
6) 인간의 눈 움직임에 기초한 통합 컴퓨터 비전 시스템(2017-2020)	57
7) 신경계에서 영감을 얻은, 사건 기반 컴퓨터 비전 정보 루트-1(2017-2019)	58
8) 신경계에서 영감을 얻은, 사건 기반 컴퓨터 비전 정보 루트-2(2017-2019)	60
9) 빠른 자동 교통혼잡 모니터링 및 고급 네트워킹, 최첨단 컴퓨팅, 비디오 분석을	통한
사건 감지(2017-2019)	······ 62
10) 정확성 예측에 따른 이미지 특성 맞춤(2017-2019)	64
11) 3D 이미지/비디오 구문 분석을 위한 기하학 상식 추론(2017-2019) ······	65
12) 시각 정서의 이해 및 편집-1(2017-2020)	
13) 시각 정서의 이해 및 편집-2(2017-2020)	
14) 자연언어처리 및 컴퓨터 비전에서의 머신러닝(2017-2020)	
15) 대규모 세립 인식을 위한 보편적인 포즈 정규화(2017-2020)	
16) 표면 보기: 비전으로부터 실행 가능한 표면 특성-1(2017-2020)	
17) 표면 보기: 비전으로부터 실행 가능한 표면 특성-2(2017-2020)	······ 72
18) 정비되지 않은 동적인 건설 환경에서 안전한 인간-로봇 공동 작업을 위한 현	
및 예측 모니터링(2017-2020)	
19) 통계적 학습 및 데이터 마이닝에서의 학제간 통합(2017-2020)	
20) 서로 다른 사회적 무리에서의 속임수와 상호작용적 동시성(2017-2020)	
21) 다결정 물질을 위한 컴퓨터 도구(2017-2020)	
22) 컴퓨터 비전, NLP, AI를 발전시키기 위한 신경영상(2017-2020)	
23) 음식물의 질과 식사 환경 사이의 연결을 위한 디지털 이미지 사용(2017-2019)	, ····· 79
24) 컴퓨터 비전 연구 및 학제간 교육을 위한 광 감지 및 범위(LIDAR) 스캐너 획	보
(2017–2019)	80
25) NEURONEX 기술 허브: 예쁜꼬마선충 커넥톰의 라이브 이미징(2017-2020) …	······ 82
26) 공공 이미지로부터 가로수의 자동 인구조사(2017-2018)	84
27) 시각 모듈로부터의 다양한 가설에 따른 전체론적 장면 이해(2017-2019)	
28) 대수 구조에 따른 통계적 추정(2017-2020)	86
29) 비공식적 및 공식적 학습을 위한 정보 과학 스테이션의 새로운 장르 상업화	

(2017–2018)
30) 큰 데이터세트에 따른 딥 로봇 러닝: 간단하고 신뢰할 수 있는 평생 학습 프레임
워크를 향해(2017-2022)
31) 제곱합 증명을 이용한 통합적 지식 발견 및 분석(2017-2020) 90
32) DSL, 추청, 합성에 따른 이질성 길들이기-1(2017-2020) ·······91
33) DSL, 추청, 합성에 따른 이질성 길들이기-2(2017-2020) ······ 92
34) 움직이는 플랫폼 위로 소형 무인 항공 시스템(SUAS)의 자율 착륙(2017-2018) ····· 93
35) 활동적이고 동작 중심의 시각 이해(2017-2022)94
36) 최악의 경우에 대한 분석을 넘어: 추정 알고리즘 및 머신러닝에서의 새로운 접근
(2017–2022)95
37) 수색구조 및 공동 로봇 제조를 위한 강건하고 확장가능하며 분포된 시맨틱 지도화-1
(2017–2020)
38) 수색구조 및 공동 로봇 제조를 위한 강건하고 확장가능하며 분포된 시맨틱 지도화-2
(2017–2020)
39) 자율주행차를 위한 인간 동인 예측(2017-2019)
40) 등급화된 자율주행차 기술을 위한 플랫폼(2017-2017)101
41) 개체 및 사건에 대한 다중모드 지식 학습(2017-2020)102
42) 설계 요소 복원을 위한 알고리즘 개발(2017-2019)
43) 소비자 하드웨어를 이용한 포토리얼리스틱 3D 모델의 신속한 생성 $(2017-2018)\cdots 104$
44) 사물인터넷을 위한 에너지 효율 비전 프로세싱 및 머신러닝 칩을 만들기 위한
자동화된 설계 유량(2017-2018)
45) 유비쿼터스 환경에서의 인간 상호작용 이해를 위한 옴니뷰 다중모드 센서 실험실
(2017–2020)
46) 멀티스케일 플레놉틱 영상 및 유한 크기 고체입자로 가득 찬 격동하는 수로 유동에
대한 직접 계산(2017-2020)
47) 유방암 생존자를 위한 림프부종 중재 운동(2017-2017)110
48) 인신매매 피해자를 찾기 위한 오퍼스케이드 텍스트 해독(2017-2019) 111
49) 생물학 박사후과정 연구장학금: 지역 꽃 계절학의 기후 유도 붕괴를 이해하기 위한
디지털 식물 표본집 및 크라우드소스 사진 레버리징(2017-2019)112
50) 어두운 생태학: 날씨 레이더에서 생물학적 신호를 알아내기 위한 딥러닝 및 거대
가우시안 프로세스-1(2017-2020)
51) 어두운 생태학: 날씨 레이더에서 생물학적 신호를 알아내기 위한 딥러닝 및 거대
가우시안 프로세스-2(2017-2020)115
52) 제한받지 않는 지형에서의 인간 걸음걸이에 대한 데이터 기반의 생화학적으로
정확한 모델링(2017-2020)
53) 고처리량, 고 세포밀도 발효를 위한 하드웨어 및 소프트웨어 시스템(2017-2018) … 118
54) 예측 렌즈를 통한 시각 및 자연적인 움직임 통계 이해(2017-2022)119

55) 아동 뇌 자기공명영상(MRI)을 위한 임상 판단 지원 도구(2017-2018) ································	··· 120
56) 지구시스템에서의 이미지-데이터 기반 딥러닝(2017-2019)	··· 122
57) 동물 보건 및 인간의 행복을 개선하기 위한 동물 복지 과제 자동화(2017-2018) …	·· 124
58) CT 대장촬영을 위한 정량 플랫폼(2017-2020) ······	··· 126
59) 서브모듈러 및 제한 강도 볼록 연결-1(2017-2020)	··· 128
60) 서브모듈러 및 제한 강도 볼록 연결-2(2017-2020)	129
61) 사람을 돕는 로봇(2017-2022)	130
62) 결합 재현 이론(2017-2020)	
63) 볼록 투사 매니폴드의 기하학 및 위상학(2017-2020)	··· 132
64) 최소한의 감독 인력에 따른 시각 추론 및 재현 학습을 위한 합성 데이터 레버리	징
(2017–2019)	134
65) 인식 하드웨어 및 소프트웨어 에코시스템 커뮤니티 기반시설 (CHASE-CI)	
(2017–2020)	135
66) 빅데이터 및 손상 데이터에서의 고차원 구조 발견을 위한 비볼록 방법(2017-2021)	··· 135
67) 포괄적 역학 부분집합 선택 프레임워크를 향해(2017-2019)	137
68) 알고리즘 최적화의 일반 분석(2017-2019)	138
69) 구조화된 예측을 위한 대립적 머신러닝(2017-2022)	138
70) 고해상도 지형 데이터 분석을 발전시키기 위한 지구과학과 사이버 기반시설	
커뮤니티의 연결-1(2017-2019)	140
71) 고해상도 지형 데이터 분석을 발전시키기 위한 지구과학과 사이버 기반시설	
커뮤니티의 연결-2(2017-2019)	··· 141
72) 고해상도 지형 데이터 분석을 발전시키기 위한 지구과학과 사이버 기반시설	
커뮤니티의 연결-3(2017-2019)	··· 142
73) 마코프 논리를 이용한 빠르고 정확한 판단 및 예측(2017-2022)	··· 143
74) 주위 머신 비전에 따른 보행자 안전과 안전한 지역 사회(2017-2018)	··· 144
75) 나아가는 오픈엔드 크라우드소싱: 크라우드소스 데이터 관리에서의 다음 경계(2017-2022)	145
76) 3D 스캐닝 질 개선을 위한 저비용 기술(2017-2020) ······	··· 146
77) 비디오 이해에 있어 딥 모델 및 그 응용에 대한 분산된 준 지도 교육(2017-2020) ·	·· 147
78) 일반화된 매트릭스 기능: 이론, 알고리즘, 응용(2017-2020)	··· 148
79) 구조화된 매트릭스를 이용한 심층신경망에 대한 동시 가속 및 저장 축소	
프레임워크-1(2017-2020)	150
80) 구조화된 매트릭스를 이용한 심층신경망에 대한 동시 가속 및 저장 축소	
프레임워크-2(2017-2020)	151
81) 무감독 분류/식별-생성 모델 러닝(2017-2020)	··· 152
82) 알고리즘과 복잡성에서의 공통 링크(2017-2020)	154
83) 시각장애 사용자를 위한 이미지 기반 실내 내비게이션(2017-2020)	155
84) 준 감독 그래프 학습에 대한 비선형 편미분방정식, 단조 수치기법, 한계 스케일	킝

	(2017–2020)	156
	85) 특정 데이터 분석 문제를 위한 신규 기하학 알고리즘(2017-2019)	158
	86) Pertubation에 따른 효율적인 학습 및 추론(2017-2019) ·····	159
	87) 온칩 러닝, 집중, 추론에 따른 울트라 에너지 효율 지능 하드웨어(2017-2022)	160
	88) 다양한 웨어러블 유형 요소에 쉽게 적응하는 앱-1(2017-2020)	161
	89) 다양한 웨어러블 유형 요소에 쉽게 적응하는 앱-2(2017-2020)	162
	90) 센서 기반 학습 시스템에 따른 수업조교(TA) 전문지식 발전(2017-2019) ·············	164
	91) 몇몇 생체의학 문제를 위한 신규 기하학 기법(2017-2020)	165
	92) 뇌파검사, 머신러닝, 신경조절을 통한 장면 범주화의 신경 동역학 밝히기-1	
	(2017–2020)	166
	93) 뇌파검사, 머신러닝, 신경조절을 통한 장면 범주화의 신경 동역학 밝히기-2	
	(2017–2020)	168
	94) 실제 세계에서의 개연 추론을 위한 알고리즘(2017-2020)	170
	95) 포괄적으로 공정하게 양육하는 교실 생태의 제도적 구축-1(2017-2019)	171
	96) 포괄적으로 공정하게 양육하는 교실 생태의 제도적 구축-2(2017-2019)	172
	97) 카네기 멜론 대학교 로봇공학 연구소 학부생을 위한 연구경험(REU) 현장-1	
	(2017–2020) ·····	174
	98) 뉴욕주립대학교 스토니브룩 캠퍼스 시각 및 결정 정보과학 센터(CVDI) 현장-2	
	(2017–2022)	175
	99) 베이즈 절차 조사: 이론, 모델링, 계산(2017-2020)	176
	100) 음악, 미디어, 마음 이해를 위한 컴퓨터 계산 방법(2017-2020)	
	101) 딥러닝 연구를 위한 기구 개발(2017-2020)	
	102) 자동 및 연결 차량 기술 교육에서의 격차 잇기(2017-2020)	180
	103) 실제 세계의 사회적 지각의 신경 기초 해독 및 재건-1(2017-2020)	
	104) 실제 세계의 사회적 지각의 신경 기초 해독 및 재건-2(2017-2020)	
1	-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)	186
	1) 공동 로봇공학을 위한 실시간 시맨틱 컴퓨터 비전(2016-2019)	186
	2) 컴퓨터 비전을 이용해 학생 영향 및 투지를 감지, 예측, 교정하기-1(2016-2020) …	187
	3) 컴퓨터 비전을 이용해 학생 영향 및 투지를 감지, 예측, 교정하기-2(2016-2020) …	188
	4) 컴퓨터 비전을 이용해 학생 영향 및 투지를 감지, 예측, 교정하기-3(2016-2020) …	190
	5) 컴퓨터 비전을 이용해 학생 영향 및 투지를 감지, 예측, 교정하기-4(2016-2020) …	192
	6) 컴퓨터 비전(과 그 너머)에 대한 감독 강하법 및 그 응용(2016-2019)	194
	7) 데이터, 주석, 도구를 위한 코브-컴퓨터 비전 교환-1(2016-2019)	195
	8) 데이터, 주석, 도구를 위한 코브-컴퓨터 비전 교환-2(2016-2019)	
	9) 데이터, 주석, 도구를 위한 코브-컴퓨터 비전 교환-3(2016-2019)	
	10) 시공간 외양 모델을 이용한 학습(2016-2021)	198
	11) 시간 척도를 가로지르는 실제적인 환경으로부터의 효율적인 시각 재현 학습-1	

(2016–2020)
12) 시간 척도를 가로지르는 실제적인 환경으로부터의 효율적인 시각 재현 학습-2
(2016–2020)
13) 토렐리 유도 정리, 브라우어 감퇴 및 보편성, 대수 비전의 기초(2016-2019) 201
14) 시각 미디어의 메시지와 목표를 자동적으로 이해하기(2016-2018) 202
15) 인식 및 합성을 위한 텍스쳐의 풍부한 언어 기반 이해(2016-2019) 203
16) 동물 집단 행동의 양적 분석을 위한 관측소 개발(2016-2018) 204
17) 자동화된 시각 데이터 분석을 통한 재난 반응 및 구조 공학을 위한 시간 결정적인
판단-지원 활성화(2016-2019)206
18) 환경 기반 시큐리티를 이용한 지능형 자량을 위한 존재 증거(2016-2019) 208
19) 자동 유공충 식별을 위한 시각 시스템-1(2016-2018)209
20) 자동 유공충 식별을 위한 시각 시스템-2(2016-2018)210
21) 유틸리티 스케일 태양 전지판 모니터링을 위한 이미지 모델링 및 머신러닝 알고리즘
(2016–2020)
22) 공동 진화 학습에 의한 역 렌더링(2016-2019) 212
23) 체내 미립자 약물 전달에서 자기 추진식 마이크로로봇의 3D 움직임 및 무리 통제-1
(2016–2019)
24) 체내 미립자 약물 전달에서 자기 추진식 마이크로로봇의 3D 움직임 및 무리 통제-2
(2016–2019)
25) 모바일 클라우드 어플리케이션을 위한 심층 신경망 가동(2016-2019) 215
26) 로우 레벨 비전을 위한 구조 추론-1(2016-2019)216
27) 로우 레벨 비전을 위한 구조 추론-2(2016-2019) 217
28) 수중 현미경 이미지의 분류학 및 속성 기반 분류에 따른 플랑크톤 다양성 수량화-1
(2016–2019)
29) 수중 현미경 이미지의 분류학 및 속성 기반 분류에 따른 플랑크톤 다양성 수량화-2
(2016–2019)
30) 인공지능 서비스 및 어플리케이션을 위한 시스템 아키텍처에서의 경계를 전진시키기
(2016–2020)
31) 재활용 쓰레기의 분류를 위한 로봇 시스템(2016-2018) 223
32) 물리학 기반 영상 합성을 이용한 물체 감지에서의 데이터 수량화 및 축소(2016-2018) … 224
33) 전체 장면 이해를 위한 강한 기하학적 우선순위 만들기(2016-2019) 225
34) 인간 행동 분석 및 재교육을 위한 시공간 대칭의 기하학 및 통계적 모델링-1(2016-2019) … 226
35) 인간 행동 분석 및 재교육을 위한 시공간 대칭의 기하학 및 통계적 모델링-2(2016-2019) … 227
36) 시간적 인과 관계 채굴에 의한 시각 기반 활동 예측(2016-2018) 228
37) 미국-독일 연구 제안: 시각 주변에서의 신경계산: 실험 및 모델(2016-2019) 229
38) 건설기계를 위한 안전하고 효율적인 가상 물리 운영 시스템(2016-2019) 230
39) 지속적인 모바일 비전을 위한 프로그램 작동 가능한 혼합 신호 시각 센서

(2016–2019)	31
40) 시각 문제 답변-1(2016-2021)	3
41) 시각 문제 답변-2(2016-2021)	34
42) 이미지 이해 및 조작을 위한 텍스트 to 이미지 참조 해결-1(2016-2019) 23	35
43) 이미지 이해 및 조작을 위한 텍스트 to 이미지 참조 해결-2(2016-2019) 23	36
44) 이미지 이해 및 조작을 위한 텍스트 to 이미지 참조 해결-3(2016-2019) ······ 23	37
45) 마이크로아키텍처 예측을 위한 딥러닝(2016-2018)23	38
46) 사용자 생성 비디오를 요약하기 위한 학습(2016-2019) 23	39
47) 딥 아키텍처에 따른 형상 프로세싱(2016-2019) 24	Ю
48) 동적 언어에서의 시각 컴퓨팅을 위한 컴파일러 번역(2016-2019) 24	12
49) 영역 이동을 위한 모델 기반 심층 증강 학습-1(2016-2019) 24	13
50) 영역 이동을 위한 모델 기반 심층 증강 학습-2(2016-2019) 24	14
51) 데이터 기반 물질 이해 및 분해(2016-2019)	16
52) 실시간 증강 비전을 위한 예측 가능한 무선 네트워킹 및 공동 3D 복원(2016-2019) ··· 24	17
53) 고도로 정확한 비디오 추적을 위한 사용자 친화적 도구-1(2016-2019) 24	19
54) 고도로 정확한 비디오 추적을 위한 사용자 친화적 도구-2(2016-2019) 25	60
55) 고도로 정확한 비디오 추적을 위한 사용자 친화적 도구-3(2016-2019) 25	51
56) 양자 에너지 보간법을 위한 삼차원 딥 웨이블렛 산란(2016-2019)25	52
57) 학제간 연구 및 프로젝트 기반 학습을 위한 연결된, 데이터 기반 자율주행차량 개발	-
(2016–2019)	54
58) 아동의 실행성 기능 평가를 개선하기 위한 컴퓨터 공학-1(2016-2020) 25	5
59) 아동의 실행성 기능 평가를 개선하기 위한 컴퓨터 공학-2(2016-2020) 25	6
60) 지각 전문 지식의 지도화, 측정, 모델링(2016-2019)25	8
61) 암컷 노래새의 노래 선호도 및 생식행위의 신경 토대(2016-2019) 25	59
62) 2016년 NSF 생물학 박사후과정 연구장학금(2016-2018) ····································	60
63) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-1(2016-2020) ····· 26	52
64) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-2(2016-2020) ····· 26	i 3
65) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-3(2016-2020) ····· 26	i 5
66) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-4(2016-2020) ····· 26	6
67) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-5(2016-2020) ····· 26	8
68) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-6(2016-2020)26	i 9

69) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-7(2016-2020)	····· 271
70) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-8(2016-2020)	····· 272
71) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-9(2016-2020)	····· 274
72) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-10(2016-2020)	····· 275
73) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-11(2016-2020)	····· 277
74) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-12(2016-2020) ····	····· 278
75) 북아메리카 네트워크 나비목: 초식 동물 중 가장 큰 계통분기에서의 다양성	
도큐멘팅-13(2016-2020)	280
76) 분류학상의 장애를 완화하기 위한 자동 종 식별, 기능 형태학, 특성 추출과 넓	l어진
시민 과학 도구(2016-2019)	281
77) 비가산 손실에 따른 경로 전문가를 위한 온라인 학습 알고리즘-1(2016-2019)	283
78) 비가산 손실에 따른 경로 전문가를 위한 온라인 학습 알고리즘-2(2016-2019)	284
79) 불리한 시각 조건에서 시각적 유사성에 대한 모델링 및 학습(2016-2019)	285
80) 이방성 방사율 분포함수를 위한 커뮤니티 벤치마킹 기반시설 계획(2016-2018)	286
81) 기하학 및 동역학에서의 강직 현상(2016-2019)	····· 287
82) 딥 네트워크 이해를 위한 최적화 프레임워크(2016-2019)	····· 288
83) 양의 그라스마니안: 응용과 일반화(2016-2019)	289
84) 알고리즘과 복잡성에서의 공통 링크(2015-2020)	290
85) 고차원 공간에서 가장 가까운 이웃 검색(2016-2019)	292
86) 고도로 이질적인 미디어에서의 유동을 위한 멀티스케일의 약한 갤러킨 방법	
(2016–2019)	293
87) 디콘볼루션을 위한 최적화 기반 프레임워크: 이론적 보장과 현실적 알고리즘	
(2016-2019)	····· 294
88) 특성 추출을 위한 새로운 알고리즘을 통한 데이터 분석 변형(2016-2019)	
89) 분산된 개인 맞춤형 제조 네트워크를 활성화하는 인식적으로 직관적인 형태 !	모델링
및 설계 인터페이스(2016-2019)	296
90) 압축 센싱 및 매트릭스 완성을 위한 효율적인 알고리즘(2016-2019)	····· 297
91) 인간-로봇 상호작용을 위한 멀티모드 뇌 컴퓨터 인터페이스-1(2016-2019)	299
92) 인간-로봇 상호작용을 위한 멀티모드 뇌 컴퓨터 인터페이스-2(2016-2019)	300
93) 실제 세계에서의 개연 추론을 위한 알고리즘-1(2016-2020)	302
94) 실제 세계에서의 개연 추론을 위한 알고리즘-2(2016-2020)	303

95) 로봇 보조 기술을 이용한 수중 동굴 지도화 능력 향상(2016-2019)	304
96) 작업 자세에 대한 비전 기반 인체공학 위험도 평가(2016-2018)	305
97) 고차원에서의 정보 컴퓨팅을 위한 통계적 보장에 따른 스케일러블 비볼	록 최적화-1
(2016–2019)	307
98) 고차원에서의 정보 컴퓨팅을 위한 통계적 보장에 따른 스케일러블 비볼	록 최적화-2
(2016–2019)	308
99) 단백질 간 상호작용 네트워크 정렬을 위한 볼록 최적화(2016-2019)	309
100) 비모수 Fisher-Rao 메트릭에 따른 베이즈 모델링 및 추론에 대한 기하학 접근(201	6-2019) 310
101) 비디오용 일시적 흥미를 예측하는 법 배우기(2016-2018)	312
102) 무인항공기(UAV) 기술에 있어 학부생을 위한 연구 경험(2016-2019) …	313
103) 모든 곳에서의 데이터 중심 작업 활성화를 위한 혼합현실 환경-1(2016-	-2019) 314
104) 모든 곳에서의 데이터 중심 작업 활성화를 위한 혼합현실 환경-2(2016-	-2019) 316
105) 적분 곡선 및 곡면의 비모수 추정법(2016-2019)	317
106) 자동화된 감정 분석을 위한 자발적 행동의 광범위하고 다양한 코퍼스	연장-1
(2016–2019)	319
107) 자동화된 감정 분석을 위한 자발적 행동의 광범위하고 다양한 코퍼스	연장-2
(2016–2019)	320
108) 자동화된 감정 분석을 위한 자발적 행동의 광범위하고 다양한 코퍼스	연장-3
(2016–2019)	322
109) 영상 정합 및 분할을 위한 고성능 작업 흐름 프리미티브-1(2016-2019)	324
110) 영상 정합 및 분할을 위한 고성능 작업 흐름 프리미티브-2(2016-2019)	
1-3. 2017년 종료 프로젝트	328
1) 시맨틱 비디오 - 비디오에서 서술까지(2016-2017)	328
2) 사용자 의식 예측 제어 시스템의 개념화 및 확인(2016-2017)	329
3) 온라인 의류 쇼핑의 개인화(2016-2017)	330
4) 고처리량 컴퓨터 행동 분석을 위한 머신 비전 시스템의 개발(2016-2017)	331
5) 제품 검색을 위한 인공지능 및 딥러닝 시스템(2016-2017)	332
6) 뇌이랑신경계 및 뇌이랑신경계의 매장 내 소매 마케팅에 대한 적용을 활	용하는
대규모 행동분석(2016-2017)	333
7) 사회 기반 시설 시스템의 생활 주기 관리를 가능하게 하는 활동적인 시민	<u>l</u> 참여
(2016–2017)	334
8) KidGab 네트워크를 이용한 어린이의 온라인 소셜 네트워크 사용 탐구(2016	5-2017) ··· 335
9) 자율주행차를 위한 에너지 효율 지각(2016-2017)	337
10) 임의 투사에 따른 확률적 추론 권한 부여(2016-2017)	338
2. NIA(National Institute on Aging)	
2-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)	339

2.

1) 표적 유발에 따른 개선된 혈압 제어를 위한 원격의료 시술: 행동변화의 효율을 증다	H
시키기 위한 행동경제학에서의 새로운 기술 및 통찰 사용(2017-2018) 3	339
2) 안전 및 이동성을 개선하기 위한 외골격에 대한 환경 영상 및 제어(2017-2019) ···· 3	341
3) 강건 앉고서기 안전을 통한 독립 외골격 사용(2017-2019) 3	342
4) 노인을 돌보는 임상 의료인 교육을 위한 증강현실 시스템(2017-2018) 3	343
2-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트) 3	344
1) 고처리량 형태학 특성화를 통한 시냅틱 조절 해명-1(2016-2019) 3	344
2) 고처리량 형태학 특성화를 통한 시냅틱 조절 해명-2(2016-2019) 3	345
3) 예쁜꼬마선충의 운동을 통한 건강한 노화 연구를 위한 강도 분석 도구(2015-2018) … 3	347
4) 알츠하이머병 위험을 가진 사람의 바이오마커 영상 종적 경과-1(2004-2021) 3	348
5) 알츠하이머병 위험을 가진 사람의 바이오마커 영상 종적 경과-2(2004-2021) 3	350
6) 나이 연관 질병 및 기능이상을 감소시키는 세놀리틱 식별을 위한 신규 방법론	
(2016-2018)	352
7) 안전 및 이동성을 개선하기 위한 외골격에 대한 환경 영상 및 제어(2016-2017) … 3	353
8) 후보 항노화 개입으로 치료된 예쁜꼬마선충 균주의 건강최적기 분석(2013-2017) … 3	354
3. NICHD(Eunice Kennedy Shriver National Institute of Child Health and Human Development) 3	355
3-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트) ····································	
1) 이동 장애를 가진 사람을 위한 커뮤니케이션 디바이스 및 다른 필수 장비의 자동	<i>5</i> 00
포지셔닝(2017-2018)	355
2) ASD 및 ADHD 아동의 신경 서명, 발달 전구물질, 결과(2017-2018) ··················· 3	
3) ASD 아동에게서 동시 발생하는 ADHD: 전구물질, 감지, 신경 서명, 조기 치료	
(2017–2022)	358
4) 데이터 관리 및 분석 코어(2017-2018)	
5) 일차의료에서 ASD 조기 위험인자 및 일상 검색에 대한 동시 발생 ADHD 증상의	
영향(2017-2018)	360
3-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)	
1) 기어- 현실 기반 초기 적응 재활-1(2015-2018)	
2) 기어- 현실 기반 초기 적응 재활-2(2015-2018)	
3) 단순 척삭동물의 형태 분석(2008-2018) 5	
4. NIMH(National Institute of Mental Health)	365
4-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트) ····································	
1) 스마트 놀이방에서의 자연모방 데이터 수집(2017-2019)	
2) 얼굴 및 목소리 신호에서 유래하는 감정 및 정체성 연관 정보에 대한 신경 재현의	
다양한 특징 모델링(2017-2020)	366
3) 광범위한 신경생리학 데이터의 공유된 분석 및 프로세싱 활성화(2017-2019) ········ 3	

4-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)
1) 자폐 범주성 장애의 행동평가 교육, 데이터 공유, 조기 마커 감지를 위한 활동 인식
시스템(2015-2018)
2) 경쟁 의존 학습의 컴퓨터, 신경, 행동 연구-1(2004-2021)
3) 경쟁 의존 학습의 컴퓨터, 신경, 행동 연구-2(2004-2021)
4) 연구 및 임상 사용을 위한 자동 얼굴 표정 분석(2012-2017)
5. NCI(National Cancer Institute)
5-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)
1) 컴퓨터/바이오통계 코어(2017-2018)
5-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)
1) 컴퓨터 비전 기술을 통한 흑색종 병리학 개선 - 집중 연구-1(2016-2021)376
2) 컴퓨터 비전 기술을 통한 흑색종 병리학 개선 - 집중 연구-2(2016-2021)377
3) 유방암 위험도의 영상 바이오마커로서 정량 실질 서술자-1(2015-2020)378
4) 유방암 위험도의 영상 바이오마커로서 정량 실질 서술자-2(2015-2020)380
5) 유방 관상피내암(DCIS) 진행의 컴퓨터화된 형태상 분자 예측 변수(2015-2018) ····· 381
6) 방광암의 병기결정 및 치료 반응 모니터링을 위한 바이오마커-1(2014-2018) 383
7) 방광암의 병기결정 및 치료 반응 모니터링을 위한 바이오마커-2(2014-2018) 384
8) 결장암 예방을 위한 크라우드소싱 지원 머신러닝-1(2016-2018)386
9) 결장암 예방을 위한 크라우드소싱 지원 머신러닝-2(2016-2018)387
10) 담배에 대한 갈망 통제를 위한 후각적 방법-1(2014-2018)
11) 담배에 대한 갈망 통제를 위한 후각적 방법-2(2014-2018)390
12) 담배에 대한 갈망 통제를 위한 후각적 방법-3(2014-2018)392
13) 담배에 대한 갈망 통제를 위한 후각적 방법-4(2014-2018)
14) 방사선요법 치료 계획을 위한 내시경 및 CT 데이터 통합-1(2013-2019) ·······395
15) 방사선요법 치료 계획을 위한 내시경 및 CT 데이터 통합-2(2013-2018) ·············· 396
16) 시각화, 분석, 관리를 위한 병리학 영상 정보과학 플랫폼-1(2015-2020)
17) 시각화, 분석, 관리를 위한 병리학 영상 정보과학 플랫폼-2(2015-2020)
18) 암 결과의 컴퓨터화된 조직학 영상 예측변수-1(2016-2021)
19) 암 결과의 컴퓨터화된 조직학 영상 예측변수-2(2016-2021)
20) 방법 개발: 효율적인 컴퓨터 비전 기반 알고리즘-1(기간 미상)
21) 방법 개발: 효율적인 컴퓨터 비전 기반 알고리즘-2(기간 미상)404
6. NEI(National Eye Institute) 407
6-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)
1) 영장류의 고 레벨 시각 재현의 출산 후 발달(2017-2019)
2) 두 눈 동작 통합 기저의 피질 계산(2017-2022)408

6-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)	
1) 시각장애인을 위한 웨어러블 로봇 물체 조정 지원(2015-2018)	
2) 피질 지도화의 모델 주도 단일 신경 연구(2016-2018)	
3) 시각 장애인을 위한 물질을 가진 오디오-촉각 상호작용 활성화-1(2016-2020)	
4) 시각 장애인을 위한 물질을 가진 오디오-촉각 상호작용 활성화-2(2016-2020)	
5) 비전 연구에서의 박사후과정 교육-1(2016-2021)	
6) 비전 연구에서의 박사후과정 교육-2(2016-2021)	
7) 인간 시각피질을 가로지르는 정보의 재현-1(2009-2019)	
8) 인간 시각피질을 가로지르는 정보의 재현-2(2009-2019)	
9) 읽기의 정신물리학 - 보통 및 저시력(1979-2019)	
10) 시각적으로 접근 가능한 공간 설계-1(2007-2019)	
11) 시각적으로 접근 가능한 공간 설계-2(2007-2019)	
12) 시각 물체에 대한 지각 및 인식에서 Area V4의 역할-1(2008-2019)	• 424
13) 시각 물체에 대한 지각 및 인식에서 Area V4의 역할-2(2008-2019)	• 425
14) 당뇨망막병 원격의료 어플리케이션을 위한 고급 영상 분석 도구-1(2016-2018) …	• 426
15) 당뇨망막병 원격의료 어플리케이션을 위한 고급 영상 분석 도구-2(2016-2018) …	• 428
16) 녹내장에서의 체적 구조 변화를 측정하는 새로운 기술(2014-2017)	• 429
17) 반점 OCT 영상에 따른 녹내장 진행 감지(2012-2017)	• 430
18) 지원형 모바일 광학문자 인식(OCR)을 통한 시각장애인용 인쇄 텍스트에 대한 접	
활성화(2015-2017)	• 432
7. NIGMS(National Institute of General Medical Sciences)	
7-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)	
1) 이미지 유래 모델링(2017-2018)	
2) 생체분자를 위한 수학 프레임워크: 단백질에서 염색체 RNA까지(2017-2022) ·······	
7-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)	
1) 세포 및 발달 생물학을 위한 컴퓨터 이미지 분석-1(2013-2018)	
2) 세포 및 발달 생물학을 위한 컴퓨터 이미지 분석-2(2013-2018)	
3) 단일 세포 레벨에서의 숙주-바이러스 상호작용 이해-1(2016-2018)	
4) 단일 세포 레벨에서의 숙주-바이러스 상호작용 이해-2(2016-2018)	
5) 3D 환경에서의 세포 대칭 파괴 및 분극-1(2016-2018) ····································	
6) 3D 환경에서의 세포 대칭 파괴 및 분극-2(2016-2018) ·······	• 443
7) 세포에서 사회까지: 어떤 미생물 기생충이 숙주 표현형을 제어하는지에 따른	
메커니즘-1(2016-2021)	• 444
8) 세포에서 사회까지: 어떤 미생물 기생충이 숙주 표현형을 제어하는지에 따른	
메커니즘-2(2016-2021)	
9) 유전자조절에서 DNA 메틸화의 역할 모델링-1(2014-2019) ······	• 446

10) 유전자조절에서 DNA 메틸화의 역할 모델링-2(2014-2019) ························· 447
11) 섬모 운동 및 좌우 패터닝에서의 내장 역위 환자 유전자 시금법-1(2014-2018) … 449
12) 섬모 운동 및 좌우 패터닝에서의 내장 역위 환자 유전자 시금법-2(2014-2018) … 450
13) 초기 커뮤니케이션 및 개발 동학 모델링(2013-2018)
14) 양적 현미경 기반 신속한 표현형 및 검색-1(2011-2019)
15) 양적 현미경 기반 신속한 표현형 및 검색-2(2011-2019)
16) 3D 형태발생에서의 물집 기능(2015-2017) ····································
17) 세포 프로파일러 세포 영상 분석 소프트웨어의 지속된 개발-1(2010-2017) 457
18) 세포 프로파일러 세포 영상 분석 소프트웨어의 지속된 개발-2(2010-2017) 458
8. NIBIB(National Institute of Biomedical Imaging and Bioengineering)
8-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)
1) 뇌종양 수술을 지도하는 무표지 조직학을 위한 유도 라만 영상(2017-2020) 460
8-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)
1) 디지털 유방 단층합성영상에서의 개인 맞춤형 교육을 위한 머신러닝 및 공동 여과
도구-1(2016-2020)
2) 디지털 유방 단층합성영상에서의 개인 맞춤형 교육을 위한 머신러닝 및 공동 여과
도구-2(2016-2020)
3) 하이브리드 영상에서 가로막힌 관찰에 따른 복잡한 움직임의 신체 표면 추적-1
(2015–2019)
4) 하이브리드 영상에서 가로막힌 관찰에 따른 복잡한 움직임의 신체 표면 추적-2
(2015–2019)
5) 자궁 내 인간 뇌 기능 연결 변화의 움직임 강건 지도화(2013-2018)
6) 의학 연구 교육에서의 물리학과 생물학(1997-2022)
7) 자동 생물의학 영상 분할을 위한 적응형 대규모 프레임워크-1(2014-2019) 472
8) 자동 생물의학 영상 분할을 위한 적응형 대규모 프레임워크-2(2014-2019) 474
9) BigDIPA: 빅데이터 이미지 프로세싱 및 분석-1(2015-2018)
10) BigDIPA: 빅데이터 이미지 프로세싱 및 분석-2(2015-2018)
11) 웨어러블 생리학 센서를 이용한 혈당 레벨의 적응 예측-1(2016-2018) ······· 479
12) 웨어러블 생리학 센서를 이용한 혈당 레벨의 적응 예측-2(2016-2018) 480
13) 뇌종양 수술을 지도하는 무표지 조직학을 위한 유도 라만 영상(2015-2017) 481
9. NINDS(National Institute of Neurological Disorders and Stroke)
9-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트) ····································
1) 신규 모델 척색동물, 유령멍게의 커넥톰 및 신경생물학(2017-2022)
9-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)
1) 최적 다감각 통합의 신경기질-1(2016-2020)

2) 최적 다감각 통합의 신경기질-2(2016-2020)	487
3) 가지돌기 나무 형태 발달의 세포골격 메커니즘-1(2013-2018)	488
4) 가지돌기 나무 형태 발달의 세포골격 메커니즘-2(2013-2018)	490
5) 인간 팔 움직임의 멀티스케일 네트워크 동역학: 신경인공기관에 대한 특성화 및	
중개-1(2014-2019)	492
6) 인간 팔 움직임의 멀티스케일 네트워크 동역학: 신경인공기관에 대한 특성화 및	
중개-2(2014-2019)	494
7) 신경회로 발달에서 축삭 분지의 분자 및 세포 메커니즘-1(2008-2019)	496
8) 신경회로 발달에서 축삭 분지의 분자 및 세포 메커니즘-2(2008-2019)	497
9) 뇌피질 표면의 다양한 확인-1(2004-2019)	498
10) 뇌피질 표면의 다양한 확인-2(2004-2019)	500
10. 7 EKNHLBI, NIAMS, NIDA, NIDCD, NIDCR, NIDDK, NIFA, NINR, NIOSH, NLM, OD)	502
10-1. 2018년 현재 진행중인 프로젝트(2017 스타트 프로젝트)	502
1) (NIAMS)골관절염 연구를 위한 다차원 MRI 기반 빅데이터 분석(2017-2019) ·······	502
2) (NIDCR)두개안면왜소증: 만 1세부터 3세까지의 얼굴 표정(2017-2019) ·············	503
3) (NIDDK)어린이의 화면 미디어 이용에 대한 자동화된 측정 개발 및 확인:	
가정에서의 화면 이용에 대한 가족 레벨 평가(FLASH)(2017-2022) ······	505
4) (NIDDK)SHAPE UP! KIDS(2017-2021)	506
5) (NIFA)누수 감지를 위한 중간 규모 지능형 로봇의 개발(2017-2020) ·············	508
6) (NINR)연구 및 임상 사용을 위한 통증 발생 및 강도에 대한 다양한 평가(2017-2019) ····	509
7) (OD)초파리에 대한 고처리량 영상 및 분류 시스템(2017-2018) ·······	510
10-2. 2018년 현재 진행중인 프로젝트(2017 이전 스타트 프로젝트)	512
1) (NHLBI)특발폐섬유증에서 ECM의 제2고조파 발생 분석(2015-2018) ······	512
2) (NHLBI)낭성섬유증 환자에 있어 CFTR 조절인자의 효율성을 예측하는 비침습,	
개인 맞춤 모델로서의 인간 코 상피오르가노이드(2016-2019)	513
3) (NHLBI)영상 패턴을 이용한 특발폐섬유증(IPF) 진행 예측(2015-2017) ······	514
4) (NIAMS)운동선수의 다리 부상 위험도 및 회복 평가를 위한 임상 3D 동작 분석	
시스템(2016-2018)	515
5) (NIDA)얼굴 코딩을 이용한 자동 평가(2016-2018) ······	516
6) (NIDA)신경과학 연구를 위한 움직임 보정 뇌 양전자방출단층촬영(PET) 영상	
(2015–2018)	518
7) (NIDCD)매우 큰 데이터베이스를 이용한 미국 수화 비매뉴얼 연구의 컴퓨터 방법-1	1
(2016–2020)	519
8) (NIDCD)매우 큰 데이터베이스를 이용한 미국 수화 비매뉴얼 연구의 컴퓨터 방법-2	
(2016–2020)	520
9) (NIDDK)간세포 이식의 양적인 분자 및 세포 MRI-1(2015-2019)	
(2016–2020)	520

10)	(NIDDK)간세포 이식의 양적인 분자 및 세포 MRI-2(2015-2019)	523
11)	(NIDDK)시각체 구성과 건강 평가-1(2016-2021) ······	524
12)	(NIDDK)시각체 구성과 건강 평가-2(2016-2021) ······	526
13)	(NIFA)인간-증강 컴퓨터 비전에 따라 발전하는 지역 삼림 관리(2016-2017) ·······	527
14)	(NIFA)정밀 수분 로봇(2016-2018) ·····	528
15)	(NINR)자기중심적 컴퓨터 비전 기반 능동 학습 공동 로봇 휠체어(2014-2018) ·····	530
16)	(NINR)소아과 통증 평가를 위한 새로운 기술(NTAP) 개발(2012-2018) ······	531
17)	(NINR)4족 인간 보조 로봇 플랫폼(Q-HARP)-1(2015-2018) ······	533
18)	(NINR)4족 인간 보조 로봇 플랫폼(Q-HARP)-2(2015-2018) ······	534
19)	(NIOSH)반복 움직임 스트레스를 위한 직독 비디오 평가 기구-1(2016-2019) ······	535
20)	(NIOSH)반복 움직임 스트레스를 위한 직독 비디오 평가 기구-2(2016-2019) ······	536
21)	(NLM)미세혈관 네트워크 및 주변 세포의 대규모 재건(2014-2018) ·······	538

本星	25
<丑1-1>	조사항목 개요와 예시25
<翌1-2>	미국의 연간 컴퓨터 비전 연구 프로젝트 수 추이(2006~2017) 26
<丑1-3>	기관별 컴퓨터 비전 연구 프로젝트 집행 현황(2006~2017)(단위 : 개, 달러) 26
<班1-4>	집행 기관별 컴퓨터 비전 연구 프로젝트 현황(2016~2017)(단위 : 개, 달러) 30
<班1-5>	담당 기관별 컴퓨터 비전 연구 프로젝트 현황(2016~2017)(단위 : 개, 달러) 30
<班1-6>	수행 기관별 컴퓨터 비전 연구 프로젝트 현황(2016 \sim 2017)(단위 : 개, 달러) $\cdots \cdots 31$
<班1-7>	미국 R&D 예산 개요 (단위 : 백만 달러)35
<翌1-8>	미국 R&D 예산 세부 내용 (단위 : 백만 달러)36
<翌1-9>	주요 비국방 R&D부처의 연구개발단계별 투자 현황 (단위 : 백만 달러)37
<翌1-10>	> 섹터와 투자 주체를 기준으로 한 2015년 미국 R&D 투자 (단위 : 십억 달러) ···· 41
<翌1-11>	› 연구재단 연구개발예산 현황 (단위 : 백만 달러)·························44
<翌1-12>	국립보건원 연구개발예산 현황 (단위 : 백만 달러) ···································
<班1-13>	> 국립보건원 연구지원 형태별 연구개발예산 현황 (단위 : 백만 달러, %)46
<班1-14>	› 국립보건원 주요 연구지원 프로그램 유형 ·······47
비미국	컨퓨터비전 기술개박 연구데마

		25
	주별 컴퓨터 비전 연구 프로젝트 수 그래픽(2006~2017) ····································	
	2006~2017년 컴퓨터 비전 연구과제 주요 키워드	
<그림1-3>	2016~2017년 연구 프로젝트 주요 키워드	33
<그림1-4>	2017년 미국 과학 기술 분야별 연방 정부 지출 분야	38
<그림1-5>	미국의 투자 출처에 따른 지출 추이(1953~2015) (단위 : 십억 달러)	39
<그림1-6>	미국 R&D 투자액 중 연방과 기업의 비율 추이(1953~2015) ·····	39
<그림1-7>	연방의 예산 기능을 통한 R&D 투자 추이(1955~2017) (단위 : 십억 달러)	40
<그림1-8>	국립보건원 연구 지원 프로그램 구조	46
Ⅱ. 미국 ₹	컴퓨터비전 기술개발 연구테마 ··············	51