

I	. 총	론 ······27
1	조사	개요 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		조사대상과 방법, 조사내용 ····································
		조사대상
		조사방법(DB, 검색어, 검색기간) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		조사내용(조사 항목) ···································
		미국의 마이크로바이옴 연구 동향과 현황
		2008~2017년(5,563개) ~~~ 28
		(1) 기관별 현황 및 추이
		(2) 주요 키워드
		2017년(413개)
		(1) 기관별 현황
		(2) 주요 키워드
2	미구	R&D 예산 동향
		2018년 미국 주요 R&D 예산 현황 ···································
		74 ····································
		7개요 57 2018년도 미국 비국방 R&D 예산 현황
		미국 R&D 투자 동향
		'2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 40
		미국 R&D 투자 트렌드 및 현황 분석
		미국 R&D 투자 계획
	1)	트럼프 행정부 2020 회계연도 R&D 예산 우선순위 발표44
	2-4.	미국 R&D 대표기관 사례 분석
	1)	연구재단(NSF)
	2)	국립보건원(NIH)

II. I	미국	마이크로바이옴	기술개발	연구테마		53
-------	----	---------	------	------	--	----

1. 2017년 스타트 프로젝트53 1-1. NSF53
1-1. NSF
1) RII 트랙-1: 캔사스 전역의 수생, 식물 및 토양 시스템의 마이크로바이옴
(2017–2022)
2) NSFDEB-BSF: 암소의 반추위 마이크로바이옴의 생태학적 망 및 생태계 작용:
다중 스케일 접근법(2017-2020)
3) 마이크로바이옴은 사회적 행동에 대한 신경 내분비 조절에 영향을 준다(2017-2020)…56
4) 합성 마이크로바이옴의 설계에 대한 생태적 및 진화적 제약(2017-2020) 57
5) 식물 미생물 협회의 주화성 감지 선호(2017-2020)
 6) 카리브해 산호의 대표적 엑소대사체 및 암초 피코 플랭크톤에 미치는 영향 (2017, 2000)
7) 연구-PGR: 붉은 오리나무 계열과 그들의 프란키아 알리니 공생체에 대한 분자
기반 해독(2017-2019) ····································
8) IOS EDGE: 큰가시고기의 기능 유전학을 위한 도구 확장을 통해 유전체학을 자연스러운 맥락으로 자리매김하기(2017-2020) ··································
사건스터군 백덕으도 자리매점하기(2017-2020) ··································
9) 미생물의 임즉 물절. 물절 내가의 새도군 될건 구국 (2017-2020) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
107 NH 드럭 1. 가이도 3 ~ 3 전 전국에 실제 비생물 3 3 세가 3 데게 지미드 연결(2017-2022) ··································
11) (CAREER): 연령, 자외선 광손상 및 박테리아 증가에 따른 인간 피부의 다단계 파괴
역학 이해(2017-2022) ··································
12) CICI: RSARC: SECTOR: 중개과학 연구를 위한 안전하고 준수 가능한 사이버
인프라 구축(2017-2020) ··································
13) (ABI SUSTAINING): 미생물 개체군 구조의 시각화 및 분석을 위한 웹 기반
플랫폼-독립적 도구(2017-2020) ··································
14) 해양 탄소 순환의 대사 흐름(2017-2020)
15) 공동의 진화적 발병을 추론하기 위한 계통 발생학의 일반화(2017-2020)
16) 복잡한 주화성 시스템에서 이화 작용 거동의 통합을 위한 조정 네트워크
(2017–2020)
17) 딕티오스텔리움-버크홀데리아의 원생 양식 공생에서 파트너의 연관성 및 조절
(2017-2021)76
18) 모델 무척추 동물에서 박테리아 매개의 내장 발달 및 공생체 게놈 진화(2017-2020) 77
19) 미생물 면역의 선천적 결정 요인(2017-2020)
20) 열역학 모델, 안정 동위원소 탐침 및 유전체학을 이용한 미세 생물 먹이망의
연결성 조사(2017-2020)80
1–2. NIAID

1) 남자 청소년 중 첫 성교 및 성숙 과정에서 음경 마이크로바이옴, 염증 및 HIV에 대한 취약성(2017-2021)82
2) 15년 간의 계통적 코호트 연구에서 1차 및 2차 백신 반응에 노화가 미치는 영향
(2017–2022)
3) 단일 세포 및 단일 분자 서열화를 통한 신장 이식의 정밀 모니터링(2017-2022) 85
4) 진드기 매개 리케차 병원체의 공간적 생태 역학(2017-2022)
5) 기생충의 공동 감염에서 HEPB 백신 반응(2017-2022)
6) 2형 저 천식의 가래 마이크로바이움 표지(2017-2022)
7) 장 질환을 위한 공학 조직 센터(2017-2022)
8) 청소년의 HIV 감수성 변화에 대한 점막 기전(2017-2020)
9) 세포액 DNA 센서에 의한 루푸스 조절(2017-2021)
10) (PROJECT 3): PREVENT: HIV 진입 억제제인 그리피스신에 대한 최초의 인간
임상 시험(2017-2019)
11) HIV 연구를 위한 대규모 데이터 분석 인프라 조율(2017-2022)
12) IFN 매개에 의한 클라미디아 트라코마티스 제거에 질의 마이크로바이옴이 미치는
영향(2017-2021)
13) T1D 예방을 위해 새로운 목표를 확인하기 위한 병원균 항균 방어 기전 규명
(2017–2022)
14) 말라리아의 중증도 형성에 있어 장 내 마이크로바이옴의 역할(2017-2021) 98
15) 위장관의 미생물 생물 지리학에 대한 미크론 규모의 범유전체적 공간 맵핑
(2017-2022)
16) 성숙, 감염성 및 외상은 청소년의 HIV 감수성에 원인이 된다(2017-2021) 101
17) 백인 및 아프리카계 미국인의 인종적 차이와 관련된 음식 알레르기 결과
(FORWARD)(2017–2022) ····· 102
18) ME/CFS 해법 센터(2017-2022) ······103
19) 점막 HIV-1 면역 및 병인 생리학에서 1형 인터페론(IFN)의 역할(2017-2022) 105
1–3. NIDDK
1) 장 내 마이크로바이옴 및 식이가 인슐린 항상성의 변화 및 심혈관 대사의 위험에
미치는 영향(2017-2022)
2) 설탕 및 모유의 올리고당이 유아의 마이크로바이옴 및 비만에 미치는 영향
(2017–2021)
3) 텍사스 주 스타 카운티에 거주하는 멕시코계 미국인들의 마이크로 바이옴 및
악화되고 있는 혈당증(2017-2022)
4) 포경 수술 전후 남성의 생식관에서 장벽의 온전성, 마이크로바이옴 및 HIV 표적
세포의 상호 작용(2017-2022)
5) 마이크로바이옴으로부터의 새로운 치료법 개발을 위한 포괄적인 플랫폼
(2017-2022)

6) 소아 비만 위험의 식이 및 미생물 예측 인자(2017-2022)
7) 숙주 생리학의 미생물 프로그래밍(2017-2022)
8) 점막 면역에 대한 III형 인터페론 조절(2017-2021)
9) 어린이 연구의 당뇨병 환경 결정 요인에 대한 NIDDK의 주제별 후속 조치 및
면역학적 평가(TEDDY)(UC4)(2017-2022)
1–4. NICHD
1) 태반 마이크로바이옴에 대한 출처(2017-2022)
2) HIV에 노출된 감염되지 않은 유아의 발달에 대한 신경 영상 및
소화관 마이크로바이옴 지표(2017-2022)
3) 임신에 대한 글로벌 체학 및 유전체 이니셔티브(2017-2022)
4) 산모-유아의 바이러스 유전체 전염: HIV 및 항레트로바이러스 요법의 역할
(2017–2022)
5) 항생제 관련 설사에서 BB-12의 역학과 장 내 마이크로바이옴에 미치는 영향을
평가하기 위한 2상 무작위 통제 시험(2017-2022)
6) 유아 바이러스 유전체 및 비만과의 연관성에 대한 종단적 연구(2017-2021) 127
7) 주산기 B군 연쇄상구균 감염에 대한 아연 결핍의 영향 규명(2017-2022) 128
8) 괴사성 소장 결장염의 계통 유전체학적, 전사체학적, 바이러스 유전체학적 및
면역 단백체학적 결정 요인(2017-2022)
1–5. NCI
1) RNF5에 의한 흑색종에서 마이크로바이옴과 면역 관문 연결(2017-2022) 131
2) 장 내 마이크로바이옴, 항생제 사용 및 대장암 재발(2017-2022)132
3) 장 내 마이크로바이옴, 항생제 사용 및 대장암 재발(2017-2020)
4) (PROJECT 3): 담배 미생물 성분 및 구강 내 미생물 탐구(2017-2018)
5) NCI 지원 면역 요법 인상 시험에 대한 고차원적 면역 모니터링(2017-2022) 136
6) 비만이 GVHD/GVT에 미치는 영향에 대한 다종 비교(2017-2021)137
1–6. NHLBI
1) 인간 마이크로바이옴 내의 수평적 유전자 이동에 대한 시스템 수준 관점
(2017–2022)
2) 만성 폐색성 폐 질환 시 폐의 마이크로바이옴에 대한 기능 분석(2017-2020) 139
3) HIV 관련 만성적 면역 활성화 및 심혈관 질환에서 장 내 마이크로 바이옴
(2017–2021)
4) 노화 관련 동맥의 기능 장애. 서양식 식단 및 유산소 운동에 대한 병진식 연구:
장 내 마이크로바이옴의 역할(2017-2020)
5) TMAO 및 죽상 동맥 경화성 심혈관 질환의 발병, 범위 및 임상 개시(2017-2021) 143
6) SPIROMICS II: 만성 폐색성 폐 질환의 이질성 및 진행에 대한 생물학적 토대
(2017-2022)
1–7. NIMHD

1) 남서부 건강 형평성 연구 협력(2017-2022)
2) 건강 형평성 연구 센터(CHER)(2017-2022)
1-8. NIGMS
1) 치료법에 대한 메타게놈: 피부 마이크로바이옴 공학을 위한 규칙 규정(2017-2022)… 149
2) 복잡한 범유전체학 샘플을 특성화하기 위한 빠르고, 문화 배제의 총체적인 게놈
접근법(2017-2019)
1-9. NIDA
1) 오피오이드를 남용할 경우 화학요법에도 불구하고 미생물 장 내 불균형 및
TLR2의 활성화가 면역 활성화, 염증 및 HIV 지속에 원인이 된다(2017-2022) 151
2) HIV 진행 중 오피오이드 남용 및 화학요법의 상황에서 미생물 장 내 불균형 및
대사체 변성의 역할(2017-2022)
3) 뇌 및 말초 장기에 증가된 독성에 대한 메스암페타민과 알코올의 상호 작용 및 기전
(2017–2022)
1–10. NINDS
1) 대뇌 해면 기형 질환에서 TLR4와 마이크로바이옴(2017-2022)
2) 척수 손상 후 척수-내장-면역 축의 역할(2017-2022)
3) ME/CFS 질병 기전을 밝히기 위한 면역, 마이크로바이옴, 대사체학 및 임상
표현형의 위상적 맵핑(2017-2022)
1–11. NIAAA
1) 1/2 HIV 알코올 관련 동반이환 및 마이크로바이옴 평가 (ACME HIV)(2017-2022)…159
2) 2/2 HIV 알코올 관련 동반이환 및 마이크로바이옴 평가(2017-2022) 160
3) 알코올성 간염에서 표적 치료법을 위한 분자 하위 유형(2017-2018)
1–12. NCCIH
1) 인간 조상의 마이크로바이옴에 대한 정의 및 재구성(2017-2022)
2) 자가 면역 질환 및 아토피에 대한 소인을 결정하는 장 내 미생물의 생리 활성 분자의
확인 및 특성(2017-2021)
1–13. NIAMS
1) 전임상 및 확증된 루퍼스에서 분자 프로파일링 중개 센터 (COMPEL)(2017-2022) 167
2) 건선 연구 중개 센터(2017-2022)
1–14. NIA
1) 알츠하이머 병의 생화학적 궤적에 대한 대사 네트워크 분석(2017-2020) 170
2) 노화와 대뇌 아밀로이드 맥관병증에서 장 내 마이크로바이옴과 뇌 간의 비신경
세포에 의한 동적인 상호 작용(2017-2022)
1–15. OD
1) HIV/SIV 백신에 대한 장 내 마이크로바이옴의 영향(2017-2021)
2) 최고 수준의 계기 장치(HEI) 보조금 프로그램(S10)(2017-2018)
1-16. 기타 연구기관

1) (NINR)조산아의 신경 발달에 미치는 통증/스트레스의 영향에 대한 다중 체학적	분석
(2017-2021)	176
2) (NIMH)정신병에 대한 병태 생리학으로서의 해마 염증(2017-2022)	$\cdots 177$
3) (NIEHS)PAS 센서 계열과 인간의 건강(2017-2025)	178
4) (NEI)공생하는 마이크로바이옴은 안구 표면의 점막 염증을 조절한다(2017-2022)	$\cdots 179$
5) (CHHSTP)서부 케냐에서의 HIV 연구 강화를 위한 과학적 파트너십과 견고한	
시스템으로 HIV 및 임신 예방을 위한 질 내부 링 평가(2017-2022)	180
2. 2017년 이전 스타트 프로젝트	
2–1. NIDDK	182
1) 서양식 식단으로의 전환 및 심혈관 대사의 위험: 마이크로바이옴으로부터 얻은	
생물 표지(2015-2019)	
2) 치은연하 마이크로바이옴 및 감소된 포도당 조절(2015-2020)	
3) 위험한 상태에 있는 유아들에서 소아 지방변증의 발병과 관련된 마이크로바이옴	
유발 대사 산물(2016-2021)	
4) 낭포성 섬유종의 분변계 마이크로바이옴 및 영양(2014-2019)	
5) 만성 골반 통증에 대한 변성 마이크로바이옴(2016-2020)	187
6) 정량적인 에너지론을 통합하여 에너지 균형에 대한 마이크로바이옴의 기여도를	
규명한다(2016-2021)	
7) 치료 및 진행성의 HIV 감염에서의 장 내 마이크로바이옴(2014-2019)	190
8) 낭포성 섬유증에서 유아기의 식이, 성장, 소화관 마이크로바이옴 및 폐 건강	
(2016-2021)	
9) HIV 환자들의 염증성 질환에 영향을 주는 식이/소화관 마이크로 바이옴의 상호	
(2015–2020)	
10) 여성의 요도 마이크로바이옴 및 요실금(2016-2021)	194
11) 모체 비만의 영장류 모델에서 보존된 태아의 후생 유전체 및 군유전체적 특징	
(2012–2022)	
12) 인간의 장 복제품 개발(2015-2020)	
13) 만성 신장 질환에서의 내장 마이크로바이옴와 대사체(2016-2021)	
14) IBD와 점막 감염, 면역학과 미생물학, 그리고 THE GI TRACT(1996-2020)	198
15) 선천적인 면역성 및 실험적 크론병(2011-2021)	
16) 위장관의 조절 요인(2000-2019)	
17) GI 감염 및 부상 센터(1999-2018)	202
18) 비만인 쌍둥이 및 마른 쌍둥이들의 내장 마이크로바이옴에 대한 범유전체학 연	구
(2007–2019)	203
19) 임신성 당뇨병에서 식이에 대한 무작위 시험: 산모와 자녀에 대한 대사 결과	
(2014–2019)	205

20) 워싱턴 대학교 영양 비만 연구 센터(1999-2021)	· 206
21) 신장에 미치는 HIV의 장기적 결과(1999-2022)	· 208
22) 비알코올 지방성 간 질환에 대한 임상 연구(2002-2019)	· 209
23) 통합 상피·점막 생물학(1997-2020)	· 210
24) 장 감염 및 염증 치료용 합성 활생균(2016-2021)	· 211
25) 염증성 장 질환에 대한 장 내 숙주-미생물 생태계의 네트워크 모델(2014-2019)·	· 213
26) UC DAVIS의 쥐 물질 대사 표현형 센터(MMPC)(2011-2021)	· 214
27) 미시간 쥐 물질 대사 표현형 센터(2016-2021)	· 216
28) 하부 요로 증상 예방: 방광 건강 임상 센터 미국 샌디에이고 현장(2015-2020) …	$\cdot 217$
29) 내장 감각의 지각 및 조절(1996-2020)	· 218
30) 실험적 대장염 중에 장 내 마이크로바이옴에 의한 점막의 병리적 측면으로부터의]
보호(2009-2021)	· 219
31) 플러스 로욜라 임상 센터(2015-2020)	· 221
32) 메이요 임상 대사체학 연구 코어(2013-2018)	$\cdot 222$
33) 미시간 대학교의 위장 연구 센터(1996-2022)	· 223
34) 인간의 염증성 장 질환에서 혈관 생물학으로 세포 및 지질단백질 트래픽킹의 통	합
(2015-2020)	· 225
35) 소아 비만 및 비만 표적 치료제의 숙주 대사에 대한 근본적인 미생물 조절	
메커니즘을 정의하는 포괄적 연구 자원(2016-2021)	· 226
36) 소화성 질환 및 간 질환 분자 연구 센터(1997-2022)	· 227
37) 위장 생물학 및 질병 센터(1996-2019)	· 229
38) 미시간 영양 비만 연구 센터(2010-2020)	· 230
39) 장 내 미생물무리에 의해 생성된 대사 산물의 식이 및 미생물의 재프로그래밍	
(2014–2019)	· 231
40) 비만 수술 후 체중의 궤적을 예측하는 메커니즘: 행동과 생물학의 상호적 역할	
(2016–2021)	· 233
41) IBD: 유전적 및 면역 병리학적 메커니즘의 역할(1997-2021)	· 234
42) 메사추세츠 종합 병원의 염증성 장 질환 연구 센터(1997-2020)	· 235
43) 유아 상장 및 마이크로바이옴 연구 2(2015-2020)	· 237
44) 염증성 장 질환 유전학 컨소시엄 데이터 조율 센터(2002-2022)	· 238
45) 소화성 질환에 대한 연구 교육(1976-2021)	· 239
46) 비만과 대사 증후군의 악순환 차단(2010-2020)	
47) 일차성 사구체 질환의 임상 연구 진정(UM1)(2013-2018)	· 242
48) 하버드 영양 비만 연구 센터(1997-2022)	
49) 만성 신장 질환에 대한 식이성 콜린, 장 내 미생물무리 및 취약성 (2015-2019) …	· 245
50) 당뇨병 연구 센터(1997-2022)	· 246
51) 비만 수술 후 장기간의 성공을 예측하는 대사체학적 생물 표지(2015-2019)	$\cdot 247$

52) 메이요 위장병학 세포 신호 센터(2009-2019) 248 56) 낭포성 섬유증의 새로운 치료법을 촉진하기 위한 번역 연구 센터(2010-2020) 253 3) 조기 항생제 사용, 장 내 마이크로바이옴 발달 및 아동 비만의 위험(2016-2021)… 259 4) HVEM: 점막의 면역 및 마이크로바이옴에 영향을 주는 종양 괴사 인자 패밀리 8) CDI 전염 및 예후에 영향을 미치는 유전 인자 및 마이크로바이옴의 특징 연구 12) HIV에 감염된 장에서 NK/ILC에 의해 항상성이 염증성 사이토카인으로 전환(2015-2020) … 270 16) 데포프로베라에 의한 선천적 면역성, 마이크로바이옴 및 HIV 감염의 조절 17) 인간의 장 질환에 대한 이해를 위한 새로운 엔테로이드 모델 공학(2015-2020) ···· 276 18) 숙주, 병원체 및 마이크로바이옴: 감염성 질병 결과의 결정 요인(2014-2019) 278 19) 기계-미생물학: 물리적인 힘이 박테리아와 숙주의 상호 작용을 조절하는 방식 20) MG-RAST 범유전체학 경로에 대한 지속적인 개발 및 유지 보수(2016-2021) ····· 280 21) UAB 성병 감염 공동 연구 센터 (STI CRC)(2014-2019) ···································281 22) UAB-MISS 여성 HIV 연구 코호트(2013-2018) ······ 283 23) 알레르기성 염증의 상피 유전자(2006-2021) 284 26) 병원체의 균체 형성에 영향을 주는 코와 목구멍의 공생 물질에서 얻은 항생 물질

(2012-2021)	288
27) 종합 아토피성 피부염 연구 네트워크(2015-2020)	289
28) 세기관지염의 바이러스성 지속 및 재발성 천명 발병 위험(2015-2019)	291
29) 존 크레이그 벤터 전염병 유전체 센터(2014-2019)	292
30) 항생제 내성 병원균에 대한 마이크로바이옴 매개 탄력성의 시스템 생물학	
(2016-2021)	293
31) 천식에서 먼지 진드기, 바퀴벌레 및 고양이 알레르기 유발 항원(1984-2018)	294
32) 비강 세균 생태학 및 황색 포도상구균의 길항 작용의 역학(2016-2021)	296
33) HIV 감수성에서 음경 박테리아 및 염증의 역할(우간다, 라카이)(2016-2021)	297
34) 장의 선천적인 면역 방어 메커니즘(2014-2018)	299
35) 피츠버그 대학교 에이즈 코호트 연구 멀티 센터(MACS)(1993-2019)	299
36) 클로스트리듐 디피실리균 감염에 대한 항생제 유도 감수성의 해독(2016-2021)	301
37) 인도 비하르 주의 내장 리슈마니어증(2007-2022)	302
38) HIV-1의 직장 감염, 재생 및 발병에 있어서 인간 내장 미생물무리의 역할	
(2016–2021)	303
39) 워싱턴 대학교 성병 감염 공동 연구 센터(2014-2019)	305
40) 노스 캐롤라이나 대학교의 관계 기관 간 여성의 HIV 연구(2013-2018)	306
41) 면역 내성 물질인 황색 포도상구균의 생물 요법에 대한 설계 및 개발	
(2015–2019)	307
42) 도심 지역의 천식 컨소시엄 3 (ICAC3)(2014-2021)	309
43) 예방 센터 U01: 임상 전 류머티스성 관절염의 항원 특이 내성 유도를 위한	
초기 목표(2012-2022)	309
44) HIV-1 감염 위험에 대한 생식기 점막 염증의 영향 정량화(2014-2019)	311
45) 바이러스 침투 예방을 위한 그리피스신 기반의 직장 살균제	
(PREVENT)(2014–2019)	312
46) 클로스트리디움 디피실로부터의 선천적 보호 기전에서 호산구의 역할(2016-2021) 3	313
47) UAB 에이즈 연구 센터(1997-2019) ······	314
48) 학제 간 면역학 교육 프로그램(1976-2022)	315
49) 클로스트리디움 디피실 4형 필리의 구조와 기능(2015-2020)	316
50) 공학적 인간의 장 오르가노이드: 장 질환을 모델링하기 위한 모듈러 공법	
(2015–2020)	
2-3. NCI	
1) 구강 마이크로바이옴 및 폐암 위해도(2016-2020)	
2) 식이 유황, 장 내 마이크로바이옴 및 대장암(2016-2021)	320
3) 전장 내 마이크로바이옴 및 위 내장 변질 형성의 위험, 및 위암 위해도	
(2016–2021)	
4) 암 및 염증 프로그램 (CIP)의 유전학 및 마이크로바이옴 CORE(2015-2019)	323

	5) 식도선암의 구강 내 마이크로바이옴(2014-2019)	· 325
	6) 화학 요법으로 유발된 GI 독성을 제거하기 위한 마이크로바이옴이 표적화된 소분:	자
	(2016–2019)	· 326
	7) 연령 및 식이: 산발적인 장암을 일으키는 주요 상호 작용 요인(2014-2019)	· 327
	8) 포괄적인 암 센터 핵심 지원 보조금(1997-2021)	· 329
	9) 자궁 경부암 위험군인 여성들의 지속적인 HPV 감염(1998-2019)	• 330
	10) 신규 및 조작된 담배 제품의 신속한 반응 특성(2013-2018)	• 331
	11) 골수 이식에 대한 세포 및 분자 연구(1997-2021)	· 332
	12) 암 연구원을 위한 갤럭시 기반의 다중 체학 정보과학 허브(2016-2020)	• 334
	13) 인간 암 게놈에서 박테리아 DNA 통합의 범위와 중요성(2015-2020)	• 336
	14) 간암에서 장 내 미생물무리에 의한 담즙산의 변화(2015-2020)	• 337
	15) 발암 위해도에서 인간 및 박테리아의 분자 경로: 식이 조절(2015-2019)	• 338
	16) 트리니티: 암의 유전학적 및 작용 상의 분석을 위한 전사체 어셈블리(2013-2018) …	339
	17) 흑인 여성의 암 발병 원인에 대한 추적 검사 연구(2012-2022)	• 341
	18) 암의 통합 유전체학을 위한 통계적 방법(2016-2021)	
	19) 바넷식도에서 미소 서식 환경의 역할(2011-2022)	
	20) 여성의 인생 과정 암 역학 코호트 (2013-2018)	
	21) 미국 원주민 암 예방을 위한 파트너십 (2의 2)(2009-2019)	
	22) 암의 인종적 차이 이해: 다민족 코호트 연구(2012-2022)	
	23) 암 유전체학: R / 바이오컨덕터의 통합적이며 확장 가능한 해법(2014-2019)	
	24) 대장암 예후에 관한 학제 간 팀 과학: 콜로케어 연구(2016-2021)	
2.	-4. NHLBI	
	1) 인공 호흡기 관련 폐렴에 선행하는 마이크로바이옴, 바이러스 유전체 및 숙주 반응	
	(2014-2018)	• 351
	2) 소화관 마이크로바이옴에 대한 임상, 유전 및 심혈관 대사 위험 인자의 상관 관계	070
		• 352
	3) 심한 RSV 세기관지염에 이어 재발하는 천명 예방을 위한 아지트로마이신	054
	4) 주요 이식 기능 장애에 대한 임상 위험 인자(2006-2018) ····································	
	5) 건강한 인간의 4가지 체액에서 세포 외 RNA의 참조 프로파일(2014-2019) ····································	
	6) 폐 질환의 혈관 신 조직종에 대한 표적 치료(2011-2021) ····································	
	 7) DCC-최적화(2013-2018) 8) 어린이와 청소년의 리노 바이러스 감염 및 천식(2002-2018) 	
	9) Th17 세포에 의한 기도 염증에 대한 미생물 유발 인자 및 분자 기전 - 재제출-1 (2015-2020) ······	
	(2015-2020) 10) 죽상 동맥 경화증 연구에서의 분자 유전학적 접근(1997-2020) ······	
	10) 국정 동택 정화등 연구에지의 군자 규선역적 접근(1997-2020) ··································	
	11/ セコイ 川下/1イ 世俗(2013-2013)	200

	12) 고혈압의 뇌-장 마이크로바이옴-면역 축(2016-2020)	366
	13) CCC를 최적화하고 응용을 선도하라(2013-2018)	367
	14) 심장 질환의 식이 병인(1985-2020)	369
	15) 선천적 면역 자극제인 PUL-042를 이용한 골수암 치료를 위한 시장 및 성공률 획	∤장
	(2011-2018)	· 370
	16) 무작위 통제 시험: VDAART 연속 연구 - DCC - LEAD(2007-2019)	372
	17) 천식의 항 염증성 지질 매개체(2016-2020)	373
	18) 식이성 포스파티딜콜린과 심혈관 질환의 장 내 공생 박테리아 대사(2010-2020) …	375
	19) 점액섬모청소의 유전적 장애(2004-2019)	376
	20) 호흡기 생물학 연구 교육(1985-2020)	377
	21) 식이, 장 내 미생물무리 및 심부전(2016-2020)	378
	22) 잘 정의된 인간 코호트에서 생체 유체의 세포 외 RNA에 대한 참조 프로파일(2014-2019) ··	379
	23) HIV 감염의 면역 및 폐 염증에 대한 유전체 분석(2013-2018)	380
2-	-5. OD	· 382
	1) 2가지 다른 종류의 다중심 코호트에서의 기도 마이크로바이옴 및 6세 아동의 천수	식
	표현형(2016-2018)	382
	2) 신생아 집중 치료실 퇴원에서 학령기에 이르기까지 미숙아의 신경 발달 궤적에서	
	사회 경제적 격차의 잠재적 매개자로서의 마이크로바이옴(2016-2018)	383
	3) 천식에 대한 비타민D, 환경적 영향 및 마이크로바이옴의 메커니즘에 대한	
	다중 체학적 접근법(2016-2018)	
	4) 쥐 자원 및 연구 센터(2001-2021)	
	5) 발달하는 뇌: 영향과 결과(2016-2018)	387
	6) 아프리카계 미국인 청소년의 신경 인지 및 대사 발달에 미치는 자궁 내 환경 및	
	유아기 환경의 영향: 장-뇌 축에 초점 맞춤(2016-2018)	389
	7) 미주리 대학교의 돌연변이 쥐 자원 및 연구 센터(2000-2020)	· 390
	8) 미국 농촌 지역 아동의 평생 건강에 영향을 미치는 형성에 중요한 초기 생애에서 9	의
	심각한 환경 노출에 대한 전향적 연구(2016-2018)	
	9) 태아기의 노출 및 어린이 건강 결과: 주 전체적 연구(2016-2018)	
	10) 특정 병원성 미생물이 없는 순종 히말라야 원숭이 생산(2000-2020)	
	11) 조기 노출 및 아동의 궤적: 성장 및 호흡기 건강(2016-2018)	
	12) 명주 원숭이의 영양 및 식이 관리의 개선 및 표준화를 위한 연구(2016-2020)	
	13) 영장류 감염병 자원(PIDR)(2015-2019) ······	
	14) 워싱턴 국립 영장류 연구 센터(1997-2022)	
	15) 어린이 호흡기 및 환경 작업 그룹 (CREW)(2016-2018)	
	16) IGF::OT::IGREEMMES NEIS-V(2016-2017)	
	17) 국립 무균 설치류 연구 센터(2003-2019)	
	18) 정밀 의학 구상 코호트 프로그램 바이오 뱅크(2016-2018)	403

2-6.	NIDCR
1)	제1형 당뇨병 및 무증상 심혈관 질환의 구강 마이크로바이옴 (2016-2021) 404
2)	마이크로바이옴은 HIV에 노출된 감염되지 않은 유아들의 성장에 위해를 준다
	(2014-2019)
3)	HIV 관련 경구 사마귀 및 칸디다증에서의 구강 내 마이크로바이옴(2013-2018) ···· 406
4)	구강 마이크로바이옴 및 메타게놈을 위한 토대(2016-2021)
5)	치은연하 마이크로바이옴의 장 내 불균형: 치주 질환 진행 중 및 치료 후에 숙주
	미생물의 메타전사체 분석(2016-2021)
6)	구강 내 마이크로바이옴 및 치주염: 폐경기 여성에 대한 전향적 연구(2014-2019) … 410
7)	배양할 수 없는 구강 마이크로바이옴의 배양, 특성, 생태 및 병원성(2014-2019) … 411
8)	유아기 우식증에 대한 전장유전체 연관 연구(2015-2020) 413
9)	구강 염증에서 단백질 탈아미드화의 역할 연구(2017-2025) 414
10) 원생 DNA 및 MPOET 플랫폼: 박테리아에 대한 유전 공학의 본질적 장벽 극복
	(2017-2022)
11) SIV 감염 중 구강 염증의 미생물 및 선천적 면역 기전(2016-2021) 417
12) 타액분비부전과 인간 구강 마이크로바이옴(2013-2018)
13) PH를 조절하고 병원균을 길항하여 구강 건강을 증진시키는 활생균(2016-2021)…419
14) 구강 내 트레포네마균 표면 단백질: 숙주 세포 상호 작용(2015-2020) 420
15) 미배양 미생물 배양: 구강에 대한 역 유전체학 및 다종 물질 컨소시엄(2014-2019)… 421
2-7.	NIMH
	산모의 스트레스 및 질 마이크로바이옴: 뇌 발달에 미치는 영향(2014-2019) 423
2)	뇌 및 행동 발달에 대한 산모 및 유아의 마이크로바이옴 결정 요인(2014-2019) … 424
3)	불안과 우울증에서 장 내 마이크로바이옴의 역할(2015-2020) 425
4)	신경성 무식욕증에서 마이크로바이옴 매개 체중, 불안 및 스트레스 조절 장애
	(2015-2020)
5)	자폐증에서의 장 내 마이크로바이옴(2016-2021)
	HIV 신경 행동 연구 센터(2001-2021)
7)	자폐증의 새로운 치료법 및 진단 프로그램을 위한 장 내 마이크로바이옴 연구
	(2013-2018)
8)	내장 마이크로바이옴 및 불안: 인간 유아에 대한 기계론적 연구(2014-2019) 431
2-8.	NIGMS
1)	미생물 대사 경로의 발견을 위한 새로운 전략(2016-2021) 433
2)	약물 대사에 대한 대인 관계 미생물 변이의 기여 정의(2012-2018) 434
	경로 도구 소프트웨어 개발 및 지원 [SRI PROPOSAL ECU 15-631](2005-2020)…435
	전산 질량 분광 분석 센터(2008-2019)
	통합 생물학을 위한 단백질 유전 정보학 연구 센터(2003-2018)
	분자, 세포 및 번역 연구를 위한 다트머스 폐 생물학 센터(2013-2018)

7) 대장균에 대한 ECOCYC 모델 생물 데이터 [SRI 제안 ECU 14-631](1992-2019)… 440
8) METACYC & BIOCYC 경로/게놈 데이터베이스(SRI 제안 ECU 14-630) (2007-2019) ····································
(2007-2019) 441 2-9. NICHD 442
1) 분만 방법, 환경 및 장 내 마이크로바이옴: 아동기의 체형에 미치는 영향
(2015-2020) ··································
2) 궤양성 대장염에 걸린 아동의 장 내 미생물 프로파일 수정(2015-2020)
2) 예정장 대장금에 실린 아장ㅋ 장 대 다양물 프로퍼릴 다 (2015-2020) 445 3) 염증성 및 감염성 질환에 대한 소아과 발달 약리학(2016-2021) 444
4) 희귀 질병 임상 연구 네트워크를 위한 희귀 질병 임상 연구 컨소시엄
4/ 의미 일상 감상 한미 데르워그일 비한 의미 일상 감상 한미 전도/기급 (RDCRC)(2003-2019) ····································
5) 생식기 면역 및 HIV 취약성에 대한 호르몬 피임제의 영향(2016-2021)
6) 유전적으로 위험에 처한 IDDM을 줄이기 위한 시도(TRIGR) 데이터 관리 장치
0) #전적으로 위험에 지인 IDDM를 돌아가 위한 지도(TRIGR) 데이너 된다 경지 (2006-2019)
(2000-2019)7) 여성의 조산 위험에 대한 질 내 미생물무리의 주변 개념적 영향(2016-2021)
7) 역장의 도전 위험에 대한 실 내 비생물부터의 부전 개함적 '장양(2010-2021) ****** 450 2-10. NCCIH ***********************************
 2 10. NCCHI 402 1) 고 폴리페놀 식품의 건강 증진 효과는 소화관의 마이크로바이옴을 통해
1) 또 늘더페일 ㅋ봅ㅋ 신경 공신 효과는 도와한ㅋ ㅋㅋ그도미ㅋ금말 공해 매개될 수 있다(2015-2020) ··································
11개월 1 ᆻ덕(2013 2020) 2) 비타민D, 크산토후몰 및 핵 수용체: 표적 면역, 미소 생물학 및(2015-2020)
2) 미디 인D, 그 인도 무질 및 딕 디 양세, 표 딕 인덕, 디도 양질덕 및(2013-2020) 403 3) 선충 병원균의 상호 작용에 대한 대사체학으로부터 항균 물질 발견 (2014-2019) ·· 454
3) 신용 상전 이 상도 이용해 대한 대자체력으로가 더 당한 물질 물건 (2014 2013) 404 4) 우유 글리칸에 의한 활생 비피더스균의 활성화(2014-2019)
5) PASINETTI: 종합적; 인지 및 심리적 탄력성 보존에서의 식이 식물
(PASINETTI)(2015-2020)
6) 식물학 및 대사의 탄력성(2005-2020) 458
0) 두달루 옷 대자의 연락 8(2003 2020) 408 2-11. NHGRI ····································
1) 아프리카의 마이크로바이옴 및 유전체학 공동 연구 센터(ACCME) (2013-2018) … 460
1) 아드디카드 다이그로마아금 및 대전체력 8.8 년 1 센터(ACCME) (2013 2013) 400 2) IHVN H3 아프리카 바이오 저장소 이니셔티브(2012-2019)
2) HIVN HS 어느디가 다아도 지장도 아니자더드(2012 2019) 401 3) 차세대 서열화에서 편견과 불필요한 가변성 극복(2010-2019) 462
4) AWI-GEN 2 단계: 아프리카인의 심장 대사 질환에 대한 유전적 및 환경적 위험
요소(2012-2022) ··································
5) 인간 유전 연구를 위한 샘플 저장소(2016-2021) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6) 메타 데이터 응용 프로그램을 지원하는 지능형 개념 에이전트(2016-2019) ···········466
0) 테니 데이니 양양 프로그램을 지원하는 지방양 개语 데이전트(2010-2019) ******** 400 2-12. NIEHS ************************************
2 12. INERIS 400 1) 유아의 마이크로바이옴 발달 및 심방 중격 결손 증상에 미치는 환경적 영향
(2016-2021)
(2010 2021) 408 2) 어린이 건강, 환경, 마이크로바이옴 및 대사체학 센터(C-CHEM2)(2015-2019) 469
2) 하던하 전경, 전경, 전하 그도비하는 및 대자재탁 센터(C CHEM2/(2013 2013) 403 3) 환경 건강 과학 연구 센터(1997-2022) 471
3) 된 3 년 3 년 4 년 1 1937 2022) 471 4) MIT 환경 건강 과학 센터(1997-2021) 472
4/ MIII 1 10 10 1 1 10 (1007 2021) 472

	5) 환경 건강 연구를 위한 생물 통계학(1977-2022)	···· 474
	6) 워싱턴 대학교의 노출, 질병, 유전체 및 환경을 위한 학제 간 센터(1997-2021)…	···· 475
	2-13. NINR	···· 477
	1) PRE에 대한 마이크로바이옴의 영향을 해독하기 위한 다중 체학 접근법	
	(2013–2018)	···· 477
	2) 흑인 여성의 마이크로바이옴 및 조기 분만에 대한 생물 행동 결정 요인	
	(2013–2018)	···· 478
	3) 자연 조기 분만 시 자궁-질 마이크로바이옴의 역할 규명(2013-2018)	480
	4) 미숙아의 마이크로바이옴: 2세 및 4세 유아의 생물학적·행동적·건강 결과	
	(2015–2020)	481
	5) 다중 체학적 접근법을 사용하여 질 증상의 원인 설명(2016-2021)	
	2-14. NIMHD	484
	1) 라틴 아메리카인들의 장 내 마이크로바이옴, 전당뇨병 및 당뇨병에 대한 역학	
	(2016-2021)	484
	2) 아프리카계 미국인 유아에서 산모의 스트레스 및 장-뇌 축(2015-2019)	
	3) 미해리 의과 대학의 건강 격차 연구 RCMI 프로그램(1997-2022)	487
	2-15. NIA	488
	1) MSFLASH: 건강한 폐경기의 생활(2015-2020)	488
	2) 잭슨 연구소의 네이선 쇼크 노화 기초 생물학 우수 센터(2010-2020)	
	3) 전국 여성 건강 연구 (SWAN) V: 중앙 실험실(1994-2019)	491
	2-16. NIDA	493
	1) 초기 HIV 감염에서 중대한 발병의 영향 조절: 조기 화학요법의 개시 및 알코올	
	사용의 영향(2015-2020)	493
	2) ABCD-USA 컨소시엄: 쌍둥이 연구 프로젝트(2015-2020)	494
	3) 여성들의 HIV/코카인 신경독증(2000-2022)	496
	2-17. 기타 연구기관	
	1) (CDC)DUKE-UNC의 의료 관련 감염 예방을 위한 예방 진원지 프로그램	
	(2016–2020)	498
	2) (CDC)워싱턴 대학 & BJC의 의료 관련 감염 예방 진원지 프로그램(2016-2020)	499
	3) (FIC)피지의 해양 생물 다양성의 탐사, 보존 및 개발(2005-2019)	500
	4) (NIBIB)GUMI: 인간의 장 상피조직-마이크로바이옴-면역의 축을 분석하기 위한	
	새로운 체외 플랫폼(2016-2021)	···· 502
	5) (NIAMS)원형탈모증 연구 중개 센터(AACORT)(2016-2021)	503
3.	연도 표기 미상 프로젝트	
	3-1. NIAID	
	1) 마이크로바이옴 CORE	505

2) 아토피성 피부염의 표적 마이크로바이옴 이식	506
3) 면역 반응 조절에 있어 장과 피부에 공생하는 박테리아의 역할	507
4) 유전성 면역 결핍에 대한 동종이계 이식 임상 시험	508
5) 기생충에 의한 열대성 질환에 통합형 유전체학 연구	510
6) 백신 접종에서 CD4+ 메모리 표현형, 기억 및 이펙터 T세포의 역할	511
7) 세균성 병원균의 유전체학: 숙주 반응, 지속성 및 전염	······ 512
8) 임상 CORE	······ 514
9) 임상	515
10) 세균성 병원균에서 항생제 내성의 유전체학	516
11) 생물 정보학 GROUP	517
12) 천식에 대한 RSV 공동 임상 규명 및 생물 표본 연구 CORE	518
13) FILMS에 대한 임상 연구	519
14) 아토피성 피부염에서 황색 포도상구균의 균체 형성에 대한 결정 요인	520
15) 말리 국제 우수 연구 센터: 기생충에 의한 전염병 및 그 매개체	······ 522
16) 말라리아 기생충 및 벡터 유전체학: 전염, 병리학 및 치료법	······ 524
17) 미생물 면역의 선천적 결정 요인	······ 526
18) 염증성 장 질환의 면역 조절 결함	······ 527
19) 벡터-숙주 및 벡터-병원체의 상호 작용을 이해하기 위한 분자 접근법	530
20) 진균 발병의 게놈 분석	······ 532
21) 결핵 감염에 대한 선천적, 전사체학적 및 미소 생명체학적인 상관 관계	533
22) 톡소플라스마 표면 항원과 면역	534
23) 아토피성 피부염의 발병 및 치료	535
24) 다중 체학 접근법을 통한 장 내 병원균 검사	537
25) T세포 분화 조절	538
26) 과학 기술 CORE	541
27) 질병 이해를 위해 바이러스 유전체학 탐구	······ 542
28) 유전체 분석	543
3-2. NCI	544
1) 암 및 염증 프로그램 (CIP)의 유전학 및 마이크로바이옴 CORE	544
2) 역학 연구를 위한 방법	546
3) 항원 특이성 T세포 활성화, 암 및 에이즈 백신에 적용	547
4) 유전 의생태학	
5) 협의 및 협업	553
6) 전신 교란 및 국소 교란이 인간 미생물에 미치는 영향	556
7) 개발 자금 CORE	556
8) 인간 유두종 바이러스 (HPV)의 자연사, 유전체학 및 위험성 평가	558
9) 쥐에서 암 관련 면역 억제 기전 분석	559

10) 인간 암의 통합적 분자 의생태학	560
11) 암 진단, 예후 및 치료 결과의 생물 표지	···· 561
12) 암과 염증에서 쥐의 마이크로바이옴의 역할	···· 564
13) 새로운 전임상 동물 모델 개발 - CAPR 인프라	566
3-3. NHLBI	569
1) 세포 에너지 대사 조절	569
2) 최초의 인간 체내 공생체 발견	···· 571
3) 대사 증후군 형질에서 유전자-식이의 상호 작용	···· 573
4) 담즙산 대사에 대한 시스템 유전학 접근법	···· 574
3-4. NIAMS	575
1) (PROJECT 1): 원형탈모증에 대한 중개 과학	···· 575
2) 척추 관절염의 발병 기전	
3) 면역, 근육 및 골 질환 연구에 생물 정보학 적용	···· 578
3–5. NHGRI	···· 582
1) 이종 및 동종 간의 비교 서열화	···· 582
2) 피부 표면에서의 유전자와 환경의 상호 작용	···· 584
3) 메틸말론산혈증 및 관련 질환 연구	585
3-6. NINR	588
1) 증상 관리 목적의 새로운 목표 설명을 위한 게놈 분석	588
2) 환자의 결과를 예측하고 치료법을 안내하는 생물 표지자	590
3) 소화 장애의 증상 통증 기전	···· 592
3-7. NIDDK	595
1) 간의 바이러스-숙주 상호 작용의 분석 및 조절	595
2) 프로젝트 1 - 생리학에 대한 소화관 미생물무리의 기여도 규명	596
3-8. NIDCR	598
1) 치주염의 만성적 염증 기전	598
2) TMAO 및 죽상 동맥 경화성 심혈관 질환의 발병, 범위 및 임상 개시	599
3-9. NIMHD	···· 602
1) (PROJECT #1): 병원체의 유전자형, 관리 및 사회적 네트워크의 차이가 MRSA	
/MSSA 감염에서 건강상의 격차를 초래하는가?	···· 602
2) 관리 CORE	603
3-10. NEI	605
1) 망막에 대한 자가 면역성의 유전적, 세포적 및 분자적 기전	605
2) 조직병리학 CORE	608
3-11. NINDS	···· 612
1) ME/CFS 질병 기전을 밝히기 위한 면역, 미생물무리, 대사체학 및 임상 표현형	의
위상적 맵핑-기초 연구 프로젝트	···· 612

2) ME/CFS 질병 기전을 밝히기 위한 면역, 미생물무리, 대사체학 및 임상 표현형의
위상적 맵핑-임상 연구 프로젝트
3-12. NIEHS615
1) 설치류의 미세 환경에서 천연 화합물 또는 오염 유발 화합물이 미치는 생리학적
영향615
2) 진핵 생물 전사 조절
3-13. 기타 연구기관
1) (NIDCR)면역 기능 장애 환자의 경구 미생물 및 면역학적 특성 규명617
2) (NICHD)분자 유전체 순서 결정 코어 시설
3) (NIGMS)단백질/구조 CORE
4) (NIA)전 수명에 걸쳐 다양한 이웃들 속에서 건강하게 늙어가기 (HANDLS)620

│. 총론	27
<표1-1>	조사항목 개요와 예시
<표1-2>	미국의 연간 마이크로바이옴 연구 프로젝트 수 추이(2008~2017)
<표1-3>	기관별 마이크로바이옴 연구 프로젝트 집행 현황(2008~2017)(단위 : 개, 달러)…28
<표1-4>	집행 기관별 마이크로바이옴 연구 프로젝트 현황(2017)(단위 : 개, 달러) 32
<표1-5>	담당 기관별 마이크로바이옴 연구 프로젝트 현황(2017)(단위 : 개, 달러) 32
<표1-6>	수행 기관별 마이크로바이옴 연구 프로젝트 현황(2017)(단위 : 개, 달러) 33
<표1-7>	미국 R&D 예산 개요 (단위 : 백만 달러)
<班1-8>	미국 R&D 예산 세부 내용 (단위 : 백만 달러)
<班1-9>	주요 비국방 R&D부처의 연구개발단계별 투자 현황 (단위 : 백만 달러) 39
<표1-10>	› 섹터와 투자 주체를 기준으로 한 2015년 미국 R&D 투자 (단위 : 십억 달러)… 43
<표1-11>	› 연구재단 연구개발예산 현황 (단위 : 백만 달러) ···································
<표1-12>	› 국립보건원 연구개발예산 현황 (단위 : 백만 달러) ···································
<표1-13>	> 국립보건원 연구지원 형태별 연구개발예산 현황 (단위 : 백만 달러, %) 48
<표1-14>	> 국립보건원 주요 연구지원 프로그램 유형 49

Ⅱ. 미국 체외진단 기술개발 연구테마 ······53

│. 총론
<그림1-1> 주별 마이크로바이옴 연구 프로젝트 수 그래픽(2008~2017)
<그림1-2> 2008~2017년 마이크로바이옴 연구과제 주요 키워드
<그림1-3> 2017년 연구 프로젝트 주요 키워드
<그림1-4> 2017년 미국 과학 기술 분야별 연방 정부 지출 분야 40
<그림1-5> 미국의 투자 출처에 따른 지출 추이(1953~2015) (단위 : 십억 달러) 41
<그림1-6> 미국 R&D 투자액 중 연방과 기업의 비율 추이(1953~2015)
<그림1-7> 연방의 예산 기능을 통한 R&D 투자 추이(1955~2017) (단위 : 십억 달러) 42
<그림1-8> 국립보건원 연구 지원 프로그램 구조48

Π.	미국 체외진단 기	기술개발 연구테미	53
----	-----------	-----------	----