## 목 차

| I  | . 총  | 론2                                                   | 9              |
|----|------|------------------------------------------------------|----------------|
| 1. | . 조시 | -<br>-<br>-<br>                                      | 29             |
|    | 1-1. | 조사대상과 방법, 조사내용                                       | 29             |
|    | 1)   | 조사대상(검색어)                                            | 29             |
|    | 2)   | 조사방법(DB, 검색어, 검색기간)                                  | 29             |
|    | 3)   | 조사내용(조사 항목)                                          | 29             |
|    | 1-2. | 미국의 바이오센서 연구 동향과 현황                                  | 30             |
|    | 1)   | 2004~2017년(4,450개)                                   | 30             |
|    |      | (1) 기관별 현황 및 추이                                      | 30             |
|    |      | (2) 주요 키워드                                           | 31             |
|    | 2)   | 2017년(499개)                                          | 33             |
|    |      | (1) 기관별 현황                                           | 33             |
|    |      | (2) 주요 키워드                                           | 37             |
| 2. | . 미국 | † R&D 예산 동향 ···································      | 39             |
|    | 2-1. | 2018년 미국 주요 R&D 예산 현황 ······                         | 39             |
|    | 1)   | 개요                                                   | 39             |
|    | 2)   | 2018년도 미국 비국방 R&D 예산 현황 ······                       | 41             |
|    | 2-2. | 미국 R&D 투자 동향 ·····                                   | <del>1</del> 2 |
|    | 1)   | '2017 회계연도 연방정부 R&D 지출의무'(R&D obligations) 분석 ······ | <del>1</del> 2 |
|    | 2)   | 미국 R&D 투자 트렌드 및 현황 분석                                | <del>1</del> 3 |
|    | 2-3. | 미국 R&D 투자 계획 ·····                                   | 16             |
|    | 1)   | 트럼프 행정부 2020 회계연도 R&D 예산 우선순위 발표                     | 16             |
|    | 2-4. | 미국 R&D 대표기관 사례 분석 ·····                              | 18             |
|    | 1)   | 연구재단(NSF)                                            | 18             |
|    | 2)   | 국립보건원(NIH)                                           | 49             |

| Ⅱ. 미국 바이오센서 기술개발 연구테마5                                                | 5  |
|-----------------------------------------------------------------------|----|
| 1. 2017년 스타트 프로젝트                                                     | 55 |
| 1-1. NSF(National Science Foundation)                                 | 55 |
| 1) (공동연구): 단일세포 기능 면역표현형을 위한 플라스모 유동성 나노안테나-슈퍼렌즈                      | :  |
| 바이오센서(2017-2020)                                                      | 55 |
| 2) (공동연구): 식품가공시설에서 실시간 식품매개 병원균 검출을 위한 일회용                           |    |
| 전(全)그래핀 미세유체 바이오센서 시스템(2017-2020)                                     | 56 |
| 3) 미국-브라질 바이오센서 워크숍: 장치 통합을 위한 생분석 (2017년 11월 8-10일;                  |    |
| ABC 연방대학교, 산투 안드례, 상파울루, 브라질)(2017-2018) ······                       | 58 |
| 4) (공동연구): EAGER: 암세포 생리학 정보를 얻는 맞춤형 세포 바이오센서                         |    |
| (2017–2019)                                                           | 30 |
| 5) (공동연구): 광결정 바이오실리카 이용 증발-유도 광유체 바이오센서(2017-2020) ···· $\epsilon$   | 31 |
| 6) 연성 플랫폼 기반 B형 나트륨이뇨펩티드(BNP) 바이오마커 검출을 위한 LED                        |    |
| 이용가능 바이오센서 개발(2017-2020)                                              | 32 |
| 7) NSCI SI2-SSE: 나노구조 물질 및 장치의 양자 시뮬레이션을 위한 멀티스케일                     |    |
| 소프트웨어(2017-2020) ·····                                                | 3  |
| 8) 그랜드밸리 주립대학교, 그랜드라피즈 커뮤니티 칼리지, 아퀴나스 대학의 연구와                         |    |
| 교육을 위한 400MHz 핵자기공명(NMR)분광기 확보(2017-2020)(                            | 6  |
| 9) 소프트 물질 프린팅을 위한 팁 기반 나노화학(2017-2020)(                               |    |
| 10) MRI: 마스크리스 석판인쇄 시스템 확보(2017-2020)(                                |    |
| 11) 차세대 유전공학적 다기능 신호 증폭기(2017-2020)(                                  |    |
| 12) 병원성 박테리아 탐지를 위한 보편적인 핵산 인식 플랫폼 (2017-2019)                        | 71 |
| 13) 신경기술에 있어서 신뢰도 있는 발전 및 혁신 개발(BRAIN)을 위한                            |    |
| 산학협동연구센터(2017-2022)                                                   | 72 |
| 14) (CAREER): 세포뼈대로의 핵뼈대 핵 링커(LINC) 복합체에 미치는 기계적 힘                    |    |
| (2017–2022)                                                           |    |
| 15) (SBIR PHASE I): 인간 후각 해독을 위한 화학 탐지 플랫폼 (2017-2018)                |    |
| 16) (공동연구): NSF/ENG/ECCS-BSF: 새로운 광학 및 광학기계적 플랫폼으로서의 복                |    |
| 액체 방울 구조(2017-2020)                                                   |    |
| 17) 수중 간독성 마이크로시스틴 현장 검출을 위한 나노센서 (2017-2020)                         |    |
| 18) (공동연구): 엑소솜의 실리콘 나노-광-유체 이용가능 다차원 고처리량의 분자 및 3                    |    |
| 기 프로파일링(2017-2020) ··································                 |    |
| 19) (SBIR PHASE I): 다합체와 MindRider에 따른 인간 신호 지도화 (2017-2018) ······ 8 |    |
| 20) (공동연구): 분자 조립을 위한 구조 단위로서 CRISPR로부터 Cas9 단백질 적·                   |    |
| (2017-2020)                                                           |    |
| 21) (COLLABORATIVE PROPOSAL): 무척추동물 포식자의 시력 주의(2017-2020) ···· 8      | S  |

| 22) | (EAPSI): 디스프로지움(Dy) 코팅 카드뮴산화물(CdO) 표면에서 의 자가조립                          |
|-----|-------------------------------------------------------------------------|
|     | 단분자층을 위한 티올화 카르보란의 합성(2017-2018)                                        |
| 23) | (SBIR PHASE II): 안구 눈물막의 객관적 측정에 따른 전방 안구 손상 중증도                        |
|     | 진단을 위한 신규 현장진단 장치(2017-2019)                                            |
| 24) | 대규모 병렬 나노포어 배열과 계면 생체분자의 상호작용 조정 (2017-2020) 89                         |
| 25) | 직접 면역글로불린 촉매에 의한 종 교차 혈청 항체 검출 (2017-2020)90                            |
| 26) | 제 60회 IEEE 국제 중서부 회로 및 시스템 심포지엄: 학생 참석 지원                               |
|     | (2017년 8월 6-9일, 터프트 대학교, 보스턴, 메사추세츠)(2017-2018)92                       |
| 27) | 신규 전기영동 전기중합 마이크로제조과정의 특성화 및 모델링 (2017-2020) 93                         |
| 28) | (SBIR PHASE II): 경피 알코올 모니터링을 위한 웨어러블 나노전자 증기센서                         |
|     | (2017–2019)                                                             |
| 29) | (RUI): 스마트폰 기술에 따른 휴대용 전자화학발광(ECL) 면역센서 개발                              |
|     | (2017–2020)                                                             |
| 30) | (공동연구): BMAT: 분자 조립을 위한 구조 단위로서 CRISPR로부터 Cas9단백질                       |
|     | 적 응(2017-2020)                                                          |
| 31) | 전기 화학 공학 - 프로세스 동작을 위한 전자 활용: 배터리 및 연료전지에서                              |
|     | 마이크로전자공학 및 센서까지(2017-2020) 98                                           |
| 32) | 중합체 표면 강화를 위한 나노구조 합성 코팅(2017-2020) 100                                 |
| 33) | (CAREER): 바이오센싱을 위한 광결정 및 종이 기반 미세유체 통합(2017-2022) · 101                |
| 34) | (RII TRACK-4): 실시간 동적 영상 및 조직 내 집단 이동 조작 (2017-2019) ····· 103          |
| 35) |                                                                         |
| 36) | (I-CORPS): 후각 수용체 기반 센서(2017-2017) ···································· |
| 37) | (I-CORPS): 식품 병원균의 신속한 검출을 위한 나노센서 (2017-2018) ······ 107               |
|     | 신경기술에 있어서 신뢰도 있는 발전 및 혁신 개발(BRAIN)을 위한                                  |
|     | 산학협동연구센터(2017-2022)                                                     |
| 39) | (EAGER): 현재의 한계를 뛰어넘는 산화 나노입자의 라디칼제거 활동 향상                              |
|     | - 학제간 과학을 통한 색다른 해결 방안(2017-2019)110                                    |
| 40) | (I-CORPS): 대규모 병렬 유전자 편집을 위한 실리콘 나노침 칩 기술(2017-2018) 111                |
| 41) | 폐암 선별검사를 위한 비침습 및 비용 효율적인 가래 측정 (2017-2020) 113                         |
| 42) | 고성능 연성 전자제품을 위한 반도체 나노결정의 광자 경화 (2017-2020) 114                         |
| 43) | (EAPSI): 생체의학 응용을 위한 빛 민감 단백질에 대한 기계학적 이해                               |
|     | (2017–2018)                                                             |
| 44) | (CAREER): 간단한 육안 감지를 위한 인쇄 가능하고 주사 가능한 염색질 나노센서                         |
|     | (2017–2022)                                                             |

| 45) (EAPSI): 인간 혈액 혈청에서의 베스핀 단백질에 대한 휴대용 스마트폰 기반 검                                 | ]출      |
|------------------------------------------------------------------------------------|---------|
| (2017–2018)                                                                        | 118     |
| 46) (MRI): 밴더빌트 대학교의 연구, 교육, 봉사활동을 위한 원자층 증착 기구 확보                                 |         |
| (2017–2019)                                                                        | 119     |
| 47) (공동연구): NSF/ENG/ECCS-BSF: 새로운 광학 및 광기계 물질로써 복합 액체                              | 방울      |
| 구조(2017-2020)                                                                      | 121     |
| 48) 생체인터페이스에서의 유동적인 감지를 위한 마이크로 가공된 장치(2017-2020)                                  | 123     |
| 49) (RI): (SMALL): 로봇을 위한 광학 피부: 촉각 감지 및 전신 시력 (2017-2020) ··                      | 124     |
| 50) 내이모세포의 혼란 역학(2017-2020)                                                        | 125     |
| 51) 2D 물질에서 불균질성 및 혼란의 역할 밝힘: 운반과 공간 및 전자 지형학                                      |         |
| 연관시키기(2017-2020) ·····                                                             | ··· 127 |
| 52) (공동연구): 감지 장치를 위한 미세공동 유기 발광 다이오드 회티탄석 광검출기                                    |         |
| (2017–2019)                                                                        | 128     |
| 53) 저산소증의 원인과 결과 및 동물성 플랑크톤에 대한 PH 영향:                                             |         |
| 운동 행동을 수직분포에 연결하기(2017-2020)                                                       | 130     |
| 54) 염증 면역질환의 지속 모니터링을 위한 나노기술 기반 웨어러블 생물학 센서                                       |         |
| (2017–2020)                                                                        |         |
| 55) 생체촉매 나노반응기 가공(2017-2020)                                                       |         |
| 56) 발아와 묘목 성장을 향상시키는 신규 신호의 발견(2017-2019)                                          |         |
| 57) 변화하는 북극에서의 늦은 계절 생산성에 대한 물리적 영향 (2017-2019)                                    | 136     |
| 58) (공동연구): 식품 및 수인성 병원체의 신속한 검출을 위한 파지 기반                                         |         |
| 나노바이오센서(2017-2020)                                                                 |         |
| 1-2. NIGMS(National Institute of General Medical Sciences)                         |         |
| 1) 살아있는 세포를 위한 GEF 바이오센서(2017-2018) ····································           |         |
| 2) 최적화 유전적 부호화된 형광 바이오센서 개발을 위한 신규 플랫폼 (2017-2020)                                 |         |
| 3) 췌장암 조기 진단을 위한 나노입자 구동형 화학 발광의 측면 유동성 바이오센서                                      |         |
| (2017–2018)                                                                        |         |
| 4) 근적외선 형광 단백질, 바이오센서 및 광유전 도구(2017-2022)                                          |         |
| 5) 유전적 부호화된 형광 바이오센서의 고처리량 최적화(2017-2021)                                          |         |
| 6) 신규 폴리케타이드 항생제 가공(2017-2019) ····································                |         |
| 7) 물리적신호전달에 의한 RhoA GEF 조절(2017-2018) ····································         |         |
| 8) 미토콘드리아 NAD+의 게이트키퍼(2017-2022) ··································                |         |
| 9) GEF-GTPase 네트워크의 다중 시각화 및 전산 분석(2017-2018) ···································· |         |
| 10) 배아세포 주기의 시간 유지 메커니즘(2017-2022)                                                 | 149     |
| 11) 센서 히스티딘키나아제에서 센서에서 촉매영역까지 신호전달의 분자 메커니즘                                        | 150     |
| 특징화(2017-2019)                                                                     |         |
| 12) 체내 단백질 제어를 위한 알로스테리 가공(2017-2021)                                              | ··· 151 |

|   | 13) 단백질 활동의 정밀 제어 및 시각화를 통한 체내 신호 해부 (2017-2022)                   | · 153 |
|---|--------------------------------------------------------------------|-------|
|   | 14) 상피세포 형태발생 및 이동 중에 GEF-GTPASE 조정(2017-2018)                     | · 154 |
|   | 15) 박테리아 신호의 고처리량 분석 및 단일세포 영상 가능화 (2017-2021)                     | · 155 |
|   | 16) 인간 황화 퀴논 산화환원효소에 의한 황화산화(2017-2019)                            | · 156 |
|   | 17) 유사분열 정확도 메커니즘(2017-2022)                                       | · 158 |
|   | 18) 재프로그래밍 중 동적 히스톤 메틸화의 유전자자리 특정 영상 (2017-2021)                   | · 159 |
|   | 19) 단일한 살아있는 세포의 실시간 영상을 위한 새로운 광안정 나노 탐침                          |       |
|   | (2017-2019)                                                        | · 161 |
|   | 20) 표적 단일세포로 고분자의 세포간 전달을 위한 고주파 초음파 이용 음향-핵산전                     | 달     |
|   | 감염(2017-2019)                                                      | · 162 |
|   | 21) 콩과(科) 식물에서 호파노이드 미생물 지질의 역할: 미생물 질소-고정 공생                      |       |
|   | (2017–2019)                                                        | · 164 |
|   | 22) 강력한 생물학적 문제(2017-2018)                                         | · 165 |
|   | 23) 일반 FAB 항체 PH 스위치의 발생 및 생물물리학 평가 (2017-2020)                    | · 166 |
|   | 24) 초파리의 적혈구내질 미세자가포식현상(2017-2021)                                 | · 167 |
|   | 25) 액틴 스트레스 섬유 부분모집단에 의한 세포 형상 및 이동의 기계적 조절                        |       |
|   | (2017–2018)                                                        | · 168 |
|   | 26) 방사 삽입의 분자 조절(2017-2021)                                        | · 169 |
|   | 27) HSPA1A와 70-KDA 열충격단백질 및 스트레스 세포의 지질 사이의 상호작용                   |       |
|   | (2017–2021)                                                        | · 171 |
|   | 28) 정지세포에서의 표피성장인자수용체(EGFR) 신호전달 블록 연구를 위한                         |       |
|   | 예쁜꼬마선충 모델(2017-2019)                                               |       |
|   | 29) 세포 주기에서의 염색질 역학(2017-2020)                                     |       |
|   | 30) 단백질-표면 상호작용의 열역학(2017-2020)                                    |       |
|   | 31) 분자 국소화 및 세포 상호작용의 맥락 풍부 질량분석(2017-2021)                        |       |
|   | 32) 간세포암종에서의 생화학적 커뮤니케이션 정량화(2017-2018)                            |       |
|   | 33) 유사분열 염색체 운동의 시공간적 제어(2017-2022)                                |       |
|   | 34) 코리노이드 특이성 분자 분석(2017-2021)                                     | • 179 |
|   | 35) 다중스케일 역학을 이용한 G단백질결합수용체(GPCR)에서 G단백질 선택성의                      |       |
|   | 구조적 기초(2017-2021)                                                  |       |
|   | 36) 후기 자가포식현상에서 PI4KIIA(2017-2021)                                 |       |
| 1 | -3. NCI(National Cancer Institute)                                 |       |
|   | 1) 신호, 운동 및 TEM 분석(2017-2018) ···································· | · 183 |
|   | 2) 항전이 암 제제의 스크리닝을 위한 나노패턴으로 맞물린 전극 배열 장치                          |       |
|   | (2017–2018)                                                        |       |
|   | 3) 종양 미소환경 및 전이(2017-2018)                                         |       |
|   | 4) 알로스테릭 키나아제 억제제 발견을 위한 새로운 시간 분해 형광기반 높은 처리                      | 량의    |

|   | 스크리닝 기술(2017-2020)                                                         | · 186 |
|---|----------------------------------------------------------------------------|-------|
|   | 5) 삼중 음성 유방암 전이의 검출을 위한 다중 전자식 신속 프로테아제 프로파                                | 일링    |
|   | (2017–2021)                                                                | · 188 |
|   | 6) 중개 후 변형 엔자임 활동의 형광 생애기반 단일 형광 발색단 바이오센서                                 |       |
|   | (2017–2020)                                                                | · 189 |
|   | 7) 세포 이미징 시설(2017-2018)                                                    | . 190 |
|   | 8) 아나스타시스에 의한 세포 생존, 암에서의 새로운 치료 표적 (2017-2020)                            | · 192 |
|   | 9) 살아있는 암세포에서의 키나아제-에피게놈 내부 조정에 대한 다양한 FRET 이                              |       |
|   | (2017–2020)                                                                | · 193 |
|   | 10) 면역제 치료법을 시각화하고 활성화하기 위한 기계 분자 엔지니어링(2017-2019)                         | · 194 |
|   | 11) 전립선 암의 라벨없는 이미징 시스템을 이용한 비침습 검출 (2017-2019)                            | · 196 |
|   | 12) 잠복 전이된 암의 후성적 및 미소환경적 조절(2017-2022)                                    |       |
|   | 13) 생의학 기술 프로그램(2017-2018)                                                 | . 199 |
|   | 14) 생체 이미징, 세포분리 및 원기 분포도 작성(2017-2018)                                    | 200   |
|   | 15) 단일 암세포 조작 및 게놈 편집을 위한 나노니들 마이크로 로봇 (2017-2019)                         | 201   |
|   | 16) 종양 발생 경로 교란을 위한 암세포에서의 네오모르프 단백질 -단백질 상호작용                             | · 발   |
|   | 현의 체계적 발견(2017-2022)                                                       | · 203 |
|   | 17) 암세포 이식 및 전이에서 PI3K 신호의 결합과 악틴 기반 세포 골격 네트                              | 워크    |
|   | (2017–2020)                                                                | 204   |
|   | 18) X선 결정학(2017-2018) ·····                                                | 205   |
|   | 19) PROJECT 3: 암세포 침입의 물리적 및 대사적 제약(2017-2018)                             | 206   |
|   | 20) 자궁암에서의 자기 전자 공학적 센싱(2017-2018)                                         | 207   |
|   | 21) 종양 관련 대식세포(TAM) 기능의 이미징(2017-2022) ·····                               | 209   |
| 1 | -4. NIDDK(National Institute of Diabetes and Digestive and Kidney Disease) | · 211 |
|   | 1) 바이오센서 개발과 표현(2017-2018)                                                 | · 211 |
|   | 2) 형광 바이오센서 및 단일 세포 영상을 이용해 초기 신호 역학을 지방세포 분화여                             | 연     |
|   | 결하기(2017-2019)                                                             | · 212 |
|   | 3) 간/신장 섬유낭포 질환의 세포 생리학 자원: CORE C(2017-2018)                              | · 213 |
|   | 4) 세포질그물-형질막(ER-PM) 이음 신호에 의한 분비성 설사의 조절 (2017-2020) ··                    |       |
|   | 5) 현미경검사 CORE(2017-2018) ·····                                             |       |
|   | 6) 폭식 장애에 대한 날트렉손+부프로피온의 효과 및 메커니즘 (2017-2022)                             |       |
|   | 7) 장 바이러스 분비성 설사의 조절(2017-2019)                                            |       |
|   | 8) 광학현미경검사 CORE(2017-2018) ·····                                           |       |
|   | 9) 인간 섬의 호르몬 방출에 대한 모듈식 모니터링(2017-2021)                                    |       |
|   | 10) 간 재증식에 있어서 산화환원 조절 해명(2017-2020)                                       |       |
|   | 11) 간/신장 섬유낭병 가공 모델 자원: CORE B(2017-2018) ······                           |       |
|   | 12) 신장 집합과 세포 및 속 칼슘에 의한 조절의 일차 섬모 이온 통로에 대한 유전적                           |       |

| 정체성(2017-2020)                                                              | 225              |
|-----------------------------------------------------------------------------|------------------|
| 13) 생체 내 영상(2017-2018)                                                      | 226              |
| 14) 근육 소식세포 조절에서의 FoxO(2017-2019)                                           | 227              |
| 1-5. NIBIB(National Institute of Biomedical Imaging and Bioengineering) ··· | 229              |
| 1) 배출된 호흡 응축물에 대한 비침습성 포도당 검출용 바이오센서 (2017-2                                | 2020) 229        |
| 2) 비정상 형광 단백질 조사 확장(2017-2018)                                              | 230              |
| 3) 가공 미세환경의 기계감지에서의 신데칸-1(2017-2019)                                        | 231              |
| 4) 저소득 및 중간소득국가에서 대장암 및 폴립 진단을 위한 현장 실시간                                    | 소변 대사체학          |
| 시험(2017-2019)                                                               | 232              |
| 5) 기능성 T1RHO 영상법의 특징 및 향상(2017-2021)                                        | 234              |
| 6) 면역분석용 부위 특정 항체 부동화를 위한 도구(2017-2018)                                     | 235              |
| 7) 가공 세포외기질(ECM) 영역을 이용한 이식 표면의 면역반응 조정 (201'                               | 7-2019) 236      |
| 8) 심장의 생물전기 모니터링 및 제어(2017-2021)                                            | 237              |
| 9) 면역-영상을 위한 향상된 자가공명 리포터(2017-2018)                                        | 239              |
| 10) 아교모세포종에서 약물전달에 대한 치료 판독으로서 세포외 PH 지도회                                   | }                |
| (2017–2021)                                                                 | 240              |
| 11) 염증성 장질환의 가정용 모니터링을 위한 현장 진단(2017-2019)                                  | ······ 242       |
| 12) 생체 내 연속 모니터링을 위한 생체-전기화학 감지기(2017-2021)                                 | 243              |
| 13) 최소한의 장비만 사용한 미량영양소의 합성 생물학 기반 검출 (2017-20                               | 021) 244         |
| 1-6. NIA(National Institute on Aging) ·····                                 | ······ 246       |
| 1) 새롭게 유전적으로 부호화된 바이오센서를 이용한 노화 과정에서의 NA                                    | D+ 레벨 관찰         |
| (2017–2021)                                                                 | 246              |
| 2) 프로테옴과 양자 이미징을 통한 노화 중인 폐 관찰(2017-2018)                                   | ······ 247       |
| 3) 조합 상태와 시딩에서의 TAU의 구조적 변경의 효과 관찰 (2017-2022)                              | 249              |
| 4) AD와 FTD에서의 TAU요법 - 표현형 다양성의 분자적 결정 인자 (20)                               | 17-2022) · · 250 |
| 5) 알츠하이머에서의 프로테오스태시스를 향상시키기 위한 시스템적인 리소                                     | _좀 연령            |
| 프로파일링(2017-2018)                                                            | 250              |
| 6) 파일럿/조사 연구 CORE(2017-2018) ······                                         | ······ 252       |
| 7) ICAP를 이용한 알츠하이머용 근본적인 의약품 선택(2017-2018) ···········                      |                  |
| 8) 노화 손상 내성에 대한 장내 미생물의 영향(2017-2019)                                       | 254              |
| 9) 분지 아미노산에 의한 건강 및 장수의 조절(2017-2017)                                       | 256              |

| 1-7. | NHLBI(National Heart Lung and Blood Institute)                   |
|------|------------------------------------------------------------------|
| 1)   | 심장 근육 세포에서의 β-아드레날린 수용체 신호 중 엔도시토시스의 역할                          |
|      | (2017–2020)                                                      |
| 2)   | 이미징과 세포 배양(2017-2018)                                            |
| 3)   | 혈관 질병에 따른 내피 막 복원의 신진대사 조정(2017-2018)260                         |
| 4)   | 거대핵세포 생물학에서의 저분자량GTP아제(2017-2021) ······ 261                     |
| 5)   | 혈소판 활성화의 준세포 메커니즘(2017-2018)263                                  |
| 6)   | 체내 혈전 성장과 안정성의 공간적 결정 인자(2017-2018) 264                          |
| 7)   | 분석 CORE(2017-2018) ····· 265                                     |
| 8)   | 폐 내복조직의 새로운 TRPV4-ENOS 신호 경로(2017-2018) ······ 26년               |
| 9)   | 새로운 심장 보호 SGC/CGMP 극소범위: 의학적으로 처리된 HF에서의 치료 표적                   |
|      | (2017–2022)                                                      |
| 1-8. | NIDA(National Institute on Drug Abuse)                           |
| 1)   | 임상약물시험에서의 순응도 확인을 위해 휴대용 바이오센서를 이용한 소변 내                         |
|      | 아세타졸아미드에 대한 DNA 앱타머 기반 전기화학 측정 개발(2017-2018) ······· 269         |
| 2)   | 미소전극 배열(MEA)에서 높은 신뢰도의 안정적인 체내 코카인 감지를 위한 이중                     |
|      | 중합체 코팅(2017-2019)                                                |
| 3)   | 아편유사제 사용 장애의 진단, 모니터링, 치료를 전환시키기 위한 기술 플랫폼 개발                    |
|      | (2017–2018)                                                      |
| 4)   | 마이크로에서 나노 스케일 신경화학 센서(2017-2022)273                              |
| 5)   | 다차원 데이터의 머신 러닝 분석을 이용한 중독 분류(2017-2022)274                       |
| 6)   | 약물 남용 및 고활성 항레트로바이러스 치료(HAART) 부착을 위한 고급 모바일                     |
|      | 헬스 개입 멘토링(2017-2019)                                             |
| 7)   | 적시 적응 개입 구성을 위한 혁신적 방법(2017-2018)277                             |
| 8)   | 2017 약물중독 신경생물학 고든 연구 컨퍼런스(2017-2018)                            |
| 9)   | 약물 보상회로에서 도파민 전달의 노시셉틴 수용체 신호 및 조절 (2017-2022) 280               |
| 1-9. | NIAID(National Institute of Allergy and Infectious Diseases) 282 |
| 1)   | 가공 순환 RNA: 실시간 바이러스 감염 보고용으로서 유전적으로 부호화된 RNA                     |
|      | 기반 바이오센서 및 그 적용을 위한 새로운 플랫폼(2017-2020)282                        |
| 2)   | 필수 기생충 G 단백질 결합 수용체에서의 '길항제 비활성화'를 위한 약리학적                       |
|      | 스크린(2017-2017) ····· 283                                         |
| 3)   | 뎅기 및 치쿤구니야 바이러스 검출을 위한 나노와이어 센서 기반 측정                            |
|      | (2017–2018)                                                      |
| 4)   | 제2메신저 신호에 대한 근본 문제를 다루는 신규 기술 개발 (2017-2018) 285                 |
| 5)   | 현장 진단용 전기 화학적 면역 확인(2017-2019)                                   |
| 6)   | 병원체 감염에 대한 숙주 유전자 반응을 위한 현장 진단 센서 (2017-2018) 288                |
| 7)   | 이중가닥RNA에 의한 2'-5'-올리고아데닐산합성효소의 조정 (2017-2020) ······ 289         |

|   | 8)  | 지카 바이러스 감염에서의 숙주 지질 역할 규명(2017-2019)                            | 290 |
|---|-----|-----------------------------------------------------------------|-----|
| 1 | -10 | . NINDS(National Institute of Neurological Disorders and Strok) | 292 |
|   | 1)  | 형광 바이오센서를 이용해 뇌 활동에 대한 세포 대사 반응 정의하기 (2017-2020)                | 292 |
|   | 2)  | 깊은 조직 영상 및 스펙트럼 멀티플렉싱을 위한 칼슘 바이오센서 (2017-2020)                  | 293 |
|   | 3)  | C9ORF72 근위축측삭경화증(ALS)에서 파열되는 특정 핵세포질 수송과정 경로에                   | 대한  |
|   |     | 해명(2017-2019)                                                   | 294 |
|   | 4)  | 소분자용 무선 광유전학 및 뇌 미소투석법을 위한 통합 시스템: 프로토타입 개발                     | 및   |
|   |     | 확인(2017-2018)                                                   | 296 |
|   | 5)  | 파킨슨병 치매에서 알파시누클레인 병리학의 아포지질단백질E (apoE) 조절                       |     |
|   |     | (2017–2022)                                                     | 297 |
|   | 6)  | 외상성 뇌손상 후 두개내압력이 피질 기능 및 인지 결과에 미치는 영향                          |     |
|   |     | (2017–2021)                                                     | 299 |
|   | 7)  | 흥분세포 무선 제어를 위한 수단으로서 신규 전자기 투시 유전자 생명공학                         |     |
|   |     | (2017–2022)                                                     | 300 |
| 1 | -11 | . NIEHS(National Institute of Environmental Health Sciences)    | 302 |
|   | 1)  | 인간 및 환경 보건 모니터링을 위한 면역측정(2017-2018)                             | 302 |
|   | 2)  | PROJECT 5: 환경 독성 물질 검출을 위한 단백질 센서 및 스위치 발견                      |     |
|   |     | (2017–2018)                                                     | 303 |
|   | 3)  | 호흡 기반 환경 모니터링을 위한 산화 스트레스 바이오센서 (2017-2018)                     | 304 |
|   | 4)  | 연구 변형 코어: 위험 물질 탐지와 교정 조치를 개선하는 노출 과학 및 기술 범위                   | 의   |
|   |     | 확장(2017-2018)                                                   | 305 |
|   | 5)  | 분석 화학 CORE(2017-2018) ·····                                     | 307 |
|   | 6)  | 화학 유발된 심장 독성에서 미토콘드리아 산화 스트레스(MOS)의 핵심 역할                       |     |
|   |     | (2017–2018)                                                     | 308 |
|   | 7)  | 연구지원코어 CORE: 유전학과 대사체학(2017-2018) ······                        | 309 |
| 1 | -12 | . OD(NIH Office of the Director)                                | 311 |
|   | 1)  | OCTET RED384(2017-2018)                                         | 311 |
|   | 2)  | Q EXACTIVE HF 하이브리드 4중국-ORBITRAP 확보(2017-2018) ······           | 312 |
|   | 3)  | 포유류 섬유증 및 재생 치유 연구를 위한 새로운 유전자삽입도구 (2017-2019)                  | 313 |
|   | 4)  | 소프트 실리콘 전극 네트: 내장기관 신경 인터페이싱 및 기능 평가를 위한 삽입 기                   | ㅏ능  |
|   |     | 기술(2017-2020)                                                   | 314 |
|   | 5)  | 결장 및 항문직장 신경근 기능 지도화를 위한 페코바이오닉스 장치 (2017-2020) …               | 315 |
|   | 6)  | 생물학 및 보건 교육을 위한 개인 맞춤형 센서 기반 디지털 미디어 시뮬레이션                      |     |
|   |     | (2017–2018)                                                     | 317 |

| 1-13 | 3. NHGRI(National Human Genome Research Institute)                               | 319 |
|------|----------------------------------------------------------------------------------|-----|
| 1)   | 행정 CORE(2017-2018) ····                                                          | 319 |
| 2)   | 프로젝트 1(2017-2018)                                                                | 320 |
| 3)   | 프로젝트 2(2017-2018)                                                                | 320 |
| 4)   | 프로젝트 3(2017-2018)                                                                | 321 |
| 5)   | 프로젝트 4(2017-2018)                                                                | 322 |
| 6)   | 프로젝트 #5(2017-2018)                                                               | 323 |
| 1-14 | 1. NEI(National Eye Institute)                                                   | 325 |
| 1)   | 바이오화학(2017-2018)                                                                 | 325 |
| 2)   | 레티놀 양극 세포 경로에서의 신호 프로세싱 이해(2017-2022)                                            | 326 |
| 3)   | 레티놀과 非레티놀 리간드에서 로돕신으로의 역학적 균형 규명 (2017-2019)                                     | 327 |
| 4)   | 뇌의 광음향 이미징을 위한 유전적으로 부호화된 활동 센서 (2017-2019)                                      | 328 |
| 1-15 | 5. NIDCR(National Institute of Dental and Craniofacial Research)                 | 330 |
| 1)   | 실시간 침샘 코티솔 모니터링을 위한 통합 수화겔 바이오센서 및 무선 판독                                         |     |
|      | (2017–2019)                                                                      | 330 |
| 2)   | 치주염에서의 뼈흡수 추적을 위한 무선 바이오센서 개발 (2017-2021)                                        | 331 |
| 3)   | 치아주위의 동적 기계생물학 활동을 지도화하기 위한 압력유발인자 및 센서                                          |     |
|      | (2017–2019)                                                                      | 332 |
| 4)   | 집단 신경능선 이동의 생물물리학적 통제(2017-2019)                                                 | 333 |
| 1-16 | 6. NIAMS(National Institute of Arthritits and Musculoskeletal and Skin Diseases) | 335 |
| 1)   | 평가, 중재 과학, 기술 자원 코어 (2017-2018)                                                  | 335 |
|      | 노스웨스턴 대학교 임상 연구를 위한 코어 센터(2017-2022)                                             |     |
| 3)   | (PROJECT 1): 통풍에서 AMP 활성화된 키나아제 및 염증                                             | 338 |
| 4)   | (VERITY): 생물정보학을 이용한 류마티스학의 가치와 증거, 고급 분석학                                       |     |
|      | (2017–2022)                                                                      | 339 |
| 1-17 | 7. NIAAA(National Institute on Alcohol Abuse and Alcoholism) ······              | 341 |
|      | 웨어러블 알코올 바이오센서의 개발, 테스트 및 검증 절차 (2017-2018)                                      |     |
| 2)   | 인식(실시간 노출에 따른 웨어러블 인식): 신속한 웨어러블 알코올 진단                                          |     |
|      | (2017–2018)                                                                      | 342 |
| 3)   | 경피 알코올 모니터링을 위한 웨어러블 나노전자 증기센서 (2017-2019)                                       |     |
| 1-18 | 3. NIMH(National Institute of Mental Health)                                     | 346 |
| 1)   | 시냅스에서의 세포사이 단백질간상호작용(PPIs)에 대한 민감한 다차원 분석을 '                                     | 위한  |
|      | 분열 RNA 중합효소(2017-2020) ·····                                                     | 346 |
| 2)   | 도파민과 해마이끼세포 상호작용(2017-2019)                                                      |     |
|      | 9. NIDCD(National Institute on Deafness and Other Communication Disorders)       |     |
|      | 음성 기능항진의 개선된 예방, 진단, 치료를 위한 임상연구센터 (2017-2022)                                   |     |
| 2)   | 털세포 병리학에서 시냅스의 역할(2017-2022)                                                     | 350 |

| 1-20. NICHD(Eunice Kennedy Shriver National Institute of Child Health and Hu | uman   |
|------------------------------------------------------------------------------|--------|
| Development) ·····                                                           | ·· 352 |
| 1) 고충격 시험 센터: 기술 개발 요소(2017-2020)                                            | 352    |
| 2) 청소년기의 생리적 스트레스, 기분, 식습관에 대한 실시간 평가 (2017-2019)                            | 353    |
| 1-21. CDC(Centers for Disease Control and Prevention)                        | 355    |
| 1) 4시간 만에 카바페넴에서 생산된 KPC를 직장 면봉 표본에서 얻는 POC                                  |        |
| (2017–2018)                                                                  | 355    |
|                                                                              |        |
| 2. 2017년 이전 스타트 프로젝트                                                         | 357    |
| 2-1. NIGMS(National Institute of General Medical Sciences)                   | 357    |
| 1) 복합적 암 검출을 위한 XE-129 NMR 바이오센서의 구조 기반 설계 (2011-2019)                       | · 357  |
| 2) 세포하 약동학을 위한 형광 바이오센서(2016-2021)                                           | 359    |
| 3) 체내 바이오센서 가공을 위한 고처리량 지속 진화 시스템 (2015-2020)                                |        |
| 4) 이온 통로-수송체 상호작용(2015-2019)                                                 | 362    |
| 5) 반응산소종(ROS) 영상을 위한 형광 툴키트(ROS) (2016-2020) ·······                         | 363    |
| 6) 상피 형성력 조절(2015-2019)                                                      |        |
| 7) 양면 PNA 이용 ERBB 수용체 감지 및 비활성화를 위한 형광원 앱타머 개발                               |        |
| (2015–2020)                                                                  | 366    |
| 8) 리스테리아 단핵구발생의 검출 및 중화를 위한 나노체(2015-2018)                                   | 367    |
| 9) 상피세포 항상성의 매개체로서 세포접합과 핵력(2016-2021)                                       | 368    |
| 10) 물리적신호전달의 체내 분석(2014-2018)                                                | 369    |
| 11) 생물 발광 스템루프 탐침을 이용한 바이러스 지속성의 민감성 감지 (2015-2020)                          | · 371  |
| 12) HIV 역전사효소 정확도 및 억제제 상호작용의 생화학(2016-2020) ······                          | 372    |
| 13) 지정 세포이동에서의 흥분망(2016-2021)                                                | 373    |
| 14) 집단 세포 결정의 시스템 생물학(2013-2018)                                             | 375    |
| 15) 복잡 경로로의 동요 및 감지 변화(1997-2022)                                            | 376    |
| 16) 단백분해효소 활동에 대해 빠르고 초민감적이며 복합적인 감지를 위한 무표지                                 |        |
| 나노포어 바이오센서(2014-2020)                                                        | 377    |
| 17) GEF-GTPASE 네트워크의 시공간적 역학(2013-2018) ·······                              | 378    |
| 18) 막에서 수용체 조직의 메커니즘 및 기능적 예후(2016-2021)                                     | 379    |
| 19) 단백질 기반 소분자 바이오센서의 전산 설계(2015-2019)                                       | 381    |
| 20) 단백질 간 상호작용의 전산 설계(2005-2020)                                             | 382    |
| 21) 전환 가능 단백질 및 효소의 설계(2015-2019)                                            | 383    |
| 22) 통합형 마이크로어레이 프린팅 및 감지 시스템(2015-2020)                                      |        |
| 23) 액틴 필라멘트와 미세관(2015-2018)                                                  |        |
| 24) 인간 세포 주기의 진입 및 종료에 대한 결정 지점(2016-2020)                                   | 387    |
| 25) 화학쏠림 신호전달(2001-2018)                                                     | 388    |

| 26) | 란탄족 원소 탐침을 사용한 단백질 상호작용의 복합 FRET 영상 (2008-2018) ····· 389                   |
|-----|-----------------------------------------------------------------------------|
| 27) | 동물 조직 내 상처 감지의 조절(2012-2021)                                                |
| 28) | 살아있는 세포의 단일 분자 영상을 위한 환경 민감성 염료 개선 (2016-2019) 391                          |
| 29) | 인간 질병 치료를 위한 GTPASE와 G단백질 억제(2016-2020)392                                  |
| 30) | 관 내 관 반도체의 화학 동기(2015-2019)                                                 |
| 31) | 지속적 치료 약물 모니터링을 위한 앱타머-수화젤 하이브리드 센서(2015-2020) … 394                        |
| 32) | 배열 특정 DNA 인식을 위한 새로운 분자 사전(2014-2018) ·············395                      |
| 33) | 미세한 공간에서의 신호 시각화와 조작을 위한 영상 도구 (2016-2021)397                               |
| 34) | PI3K/AKT/MTOR 경로에 의한 신호전달(2015-2019) ···········398                         |
| 35) | P53 유전자에 의한 이동 요소의 억제(2015-2019) ············399                            |
| 36) | 세포 분석을 위한 나노쉘 센서(2015-2019)                                                 |
| 37) | 모형종 애기장대에서의 비접힘단백질반응(2012-2020)401                                          |
| 38) | 빈쿨린 활성화 및 힘 전파의 메커니즘(2016-2020)··································           |
| 39) | 체내 번역 및 단백질 생물발생을 조절하는 상호작용(2013-2018)404                                   |
| 40) | 천연물질 유전자군 발현을 위한 유전체 및 합성 생물학 도구 (2014-2019) 405                            |
| 41) | 3D 환경에서 세포의 대칭파괴 및 분극(2016-2018) ····································       |
| 42) | 식물의 세포 극성 및 비대칭 분할(2014-2019)                                               |
| 43) | 비수용체 티로신 키나아제의 구조 및 조절(2014-2018)409                                        |
| 44) | 해마 종양억제경로에 의한 염색체 안정성의 유지(2016-2021)410                                     |
| 45) | 조직적 집단 이동에 관련된 메커니즘 식별(2015-2018)                                           |
| 46) | PDE와 칼시뉴린에 의한 PKA 신호 종료의 직접 조정(2016-2019) ·················412              |
| 47) | 정량 단백질체학을 위해 전기화학적으로 향상된 플라스몬 영상 (2013-2017) 413                            |
| 48) | T-DARPP와 DARPP-32의 고분자 상호작용(2014-2018) ···································· |
| 49) | 단일 분자 확률 감지를 위한 가공 나노포어(2009-2018)                                          |
| 50) | HIV 잠복기의 자기 지시 단일 세포 전사체 분석(2016-2021) ···································· |
| 51) | 배열 의존 G단백질결합수용체(GPCR) 재생 보장 메커니즘 (2016-2020)417                             |
| 52) | 단백질-이온 결합에서의 특이성과 선택성(2015-2019)                                            |
| 53) | 유사분열 방추 조립 및 기능의 메커니즘(1978-2018)420                                         |
| 54) | 외부 막 단백질의 구조, 조립, 기능(1997-2019)                                             |
| 55) | 포유류의 근적외선 영상을 위한 박테리아성 피토크롬 가공 (2014-2018) 422                              |
| 56) | 살아있는 세포에서의 물리적신호전달을 지도화하기 위한 생명공학 접근                                        |
|     | (2004–2018)                                                                 |
| 57) | 알파-케토기의 이중 촉매 비대칭 광산화 환원반응 결합 (2016-2019) 425                               |
| 58) | 안정적인 신호전달(2015-2019)                                                        |

| 2-2. NHLBI(National Heart Lung and Blood Institute)                               | 429        |
|-----------------------------------------------------------------------------------|------------|
| 1) 실시간 화학요법 혈압 모니터링을 위한 삽입형 바이오센서 (2014-2019)                                     | 429        |
| 2) 혈관 기능의 장기간 연구를 위한 광학 바이오센서 쥐의 창조 (2016-2020)                                   | 430        |
| 3) 심근에서의 β-AR 신호의 인슐린 억제(2015-2019) ·······                                       | ······ 432 |
| 4) MET 신드롬에서의 심장 기능 부전: IR과 BAR 신호 사이에서의 혼선(2015-20                               | )19) 433   |
| 5) 단일 세포 이미징으로 연구한 아테로프롬 기계적변환의 메커니즘 (2013-2017)                                  | 435        |
| 6) 심장 미오사이트에서의 β아드레날린 신호에 의한 비대와 고사의 감별 조절                                        |            |
| (2016-2020)                                                                       | 436        |
| 7) 심장 발작에서의 심혈관 변화를 감지하기 위한 비침습성 바이오센서 (2016-202                                  | 21) · 437  |
| 8) 심장 비대증에서 F-BAR 단백질 CIP4의 역할(2016-2019) ······                                  | 438        |
| 9) 보건과 질병에서의 혈관 CAV1.2 통로의 공역 반응(2015-2019) ······                                | 440        |
| 10) 칼슘 스파클러로 유도된 당뇨병 혈관 기능 부전(2010-2020)                                          | 441        |
| 11) 고혈압에서의 국소범위 시그널링을 통한 근육 내피 기능의 조절 (2014-2018)                                 | 443        |
| 12) 흐름 유도된 내피의 선천 면역과 동맥경화증 민감성(2016-2020)                                        | 444        |
| 13) 심장 기능부전 치유를 위한 칼슘 펌프 활성화(2015-2019)                                           | 445        |
| 14) 심장에서 인접한 포스파타아제와 전사 요소 조정(2016-2020)                                          | 447        |
| 15) 심장 비대를 유도하는 핵주위 칼슘의 역할(2016-2020)                                             | 448        |
| 16) 광학 시그널링을 위한 유전적 자원(2014-2019)                                                 | 449        |
| 17) 뇌 맥관구조에서 KIR 통로를 이용한 K+ 센싱& 전기 시그널링 (2016-2020)…                              | 450        |
| 18) 심장의 G 단백질 연결된 엔도솜 신호 수용체의 조정(2016-2019) ······                                | 451        |
| 19) CYB5R3 <sup>2</sup> 의 혈관평활근과 혈압 조정(2016-2021)                                 | ····· 452  |
| 20) 기관 내 튜브 평활근의 PLK1 조정(2016-2020) ·····                                         | ······ 453 |
| 21) VEGH 시그널링에서 새로운 산화환원 센서로써의 단백질 이황화물 이성화 효                                     | L仝         |
| (2016–2020)                                                                       | 454        |
| 22) 심장의 단세포 이미징(2014-2018)                                                        | ····· 456  |
| 23) 자가 전력 이식 가능한 소아용 심장 센서를 위한 RFID 기반 무선 시스템                                     |            |
| (2016–2018)                                                                       | 457        |
| 2-3. NIDDK(National Institute of Diabetes and Digestive and Kidney Disease) ····· | 459        |
| 1) 인간 이자섬에서의 콜린성 신호(2016-2019)                                                    | ····· 459  |
| 2) 앱타센서에 의한 급성 신장손상 조기 진단(2013-2018)                                              | 460        |
| 3) 대생물 작용성 펩타이드 분비에 대한 세포 생물학(1990-2019)                                          | ····· 462  |
| 4) 고급 신장 현미경분석 센터(2007-2022)                                                      | ······ 463 |
| 5) 인슐린 분비의 조절 메커니즘(2006-2019)                                                     | 464        |
| 6) 체내 포도당 바이오센서의 분석 성능에 대한 당뇨병 및 산화질소 방출 지속시                                      | 간의         |
| 역 할(2015-2019)                                                                    |            |
| 7) CORE E: 영상 및 줄기 세포 생물학 CORE(2016-2017) ······                                  | 466        |
| 8) 포도당 항상성 교정을 위한 수용성 NSF 부착 단백질수용체 (SNARE) 메커니                                   | 즘 조절       |

|    | (2014–2018)                                                       | ·· 467 |
|----|-------------------------------------------------------------------|--------|
|    | 9) 기능성 베타 세포 질량과 인슐린 민감도를 개선하기 위한 PAK1 표적화                        |        |
|    | (2014–2018)                                                       | ·· 469 |
|    | 10) 다낭신장병을 위한 새로운 치료법(1995-2020)                                  | ·· 470 |
|    | 11) 이자섬 기능을 조절하는 새로운 다세포 특성(2015-2020)                            | ·· 472 |
|    | 12) 상피 손상에서의 섬모발생(1997-2019)                                      | ·· 473 |
|    | 13) 장염 중 뉴런 사멸에 있어 창자 아교의 역할(2015-2020)                           | ·· 474 |
|    | 14) 저혈당 연관 자율신경 상실의 메커니즘(2008-2018)                               | ·· 476 |
|    | 15) 2형 당뇨병에서 비접힘단백질반응의 동적 유전자 지도화 (2016-2018)                     |        |
|    | 16) 숙주면역을 조정하는 박테리아 인자(2006-2019)                                 | ·· 478 |
|    | 17) AgRP 뉴런 활동 - 형성력, 유전자발현, 흥분 구심 통제 (2012-2020)                 |        |
|    | 18) 칼슘 스파크 및 방광 민무늬근육 흥분성(1998-2018)                              | ·· 481 |
|    | 19) 내피 미토콘드리아 신호와 내피세포에서 마이토푸신의 역할 (2013-2018)                    | ·· 482 |
|    | 20) 글루카곤 분비를 조절하는 이자섬 역학(2013-2018)                               | ·· 484 |
|    | 21) CORE D: 세포 기능 분석 CORE(2016-2017) ·····                        | ·· 485 |
|    | 22) 간/신장 섬유낭병 코어 센터(2005-2020)                                    | 486    |
|    | 23) 구분 고리형AMP(cAMP) 신호의 메커니즘(2006-2021) ·····                     | ·· 487 |
| 2- | -4. NINDS(National Institute of Neurological Disorders and Strok) | ·· 489 |
|    | 1) 형광 바이오센서를 이용한 체내 세포 에너지 대사 영상(2015-2018)                       | ·· 489 |
|    | 2) 발작에 의한 심폐 장애의 네트워크 메커니즘(2016-2021)                             | ·· 490 |
|    | 3) 사용 기반 기능성 네트워크 재구성을 통한 소아 뇌손상 회복 (2015-2020)                   | ·· 491 |
|    | 4) 더 나은 2-광자 탐침을 위한 북극광 공동연구(2015-2018)                           | ·· 493 |
|    | 5) 발달 피질기형에서 글루탐산염 신호의 역할(2012-2018)                              |        |
|    | 6) SARM1 활성화 패턴 및 메커니즘 식별(2015-2018) ·····                        |        |
|    | 7) 분석 화학(2012-2022) ·····                                         |        |
|    | 8) 뉴런의 비사멸성 카스파제 활동(2016-2018)                                    |        |
|    | 9) 별아교세포-뉴런 신호(1998-2020)                                         | 499    |
|    | 10) 근위축측삭경화증(ALS) 진행에 대한 바이오마커로서 골격근에서 의 SMAD 신호                  |        |
|    | (2016–2021)                                                       |        |
|    | 11) 신경세포 및 뇌조직에서의 검색에 최적화된 측정법 개발에 강조점을 둔, 살아                     | ·있는    |
|    | 세포의 형광성을 측정하는 신속하고 정확한 도구를 발전시키기 위한 기술                            | 개발     |
|    | (2014–2019)                                                       | 502    |
|    | 12) 줄기세포 신호의 광유전 특성 및 제어(2014-2019)                               | 503    |
|    | 13) 신경발달장애 모델링을 위한 마이크로시스템(2016-2018)                             |        |
|    | 14) 척추동물 척수 발달에서 섬모형 비-시각 옵신을 통한 빛 감지 (2016-2019)                 |        |
|    | 15) 미토콘드리아 활성산소종(ROS) 미세영역 및 신경 허혈 (2015-2020)                    | 506    |
|    | 16) 축삭 지도 및 신경 형태발생에서의 단백질 표적화 조절 (2015-2019)                     | 507    |

|    | 17) AMP 활성화된 키나아제(AMPK), 대사, 근위축측삭경화증 (ALS)(2016-2021) ····  | 509   |
|----|--------------------------------------------------------------|-------|
|    | 18) ALPHAVBETA8 인테그린에 의한 신호전달(2014-2019) ······              | 510   |
|    | 19) 다중 신경전달물질 감지 및 광유전학을 위한 다기능 미세탐침 (2014-2019)             | 511   |
|    | 20) 개선된 시냅스 기능으로 이어지는 손상 후 신경아교전달물질 수준 조절                    |       |
|    | (2014–2019)                                                  | · 512 |
|    | 21) 피질 사이신경세포 이동에서 c-Jun N-terminal kinase(JNK) 신호의 역할       |       |
|    | (2015–2020)                                                  | · 513 |
|    | 22) 뇌 내에서의 Ca2+ 활성화 TMEM16 통로 및 그 생리학적 역할 (2015-2018) ······ | 514   |
| 2- | -5. NCI(National Cancer Institute)                           | · 516 |
|    | 1) SCH : 종양 모니터링을 위한 INT 무선 이식가능 전기 바이오센서 (2014-2018) ···    | 516   |
|    | 2) 암에서 신호 경로 억제를 감시하기 위한 바이오센서 검사 (2014-2019)                | · 517 |
|    | 3) SWATH-MS에 대한 다중 키나아제 바이오센서 분석의 확대 (1 of 2)(2014-2018)     | 519   |
|    | 4) 일렉트로파지 바이오센서를 이용한 회귀성 방광암 모니터링 (2016-2019)                | 520   |
|    | 5) 암에서의 세포 내 PH 역학의 역할(2016-2021) ······                     | 522   |
|    | 6) 체내 종양 이동 도중의 돌출부 가소성(2016-2019)                           | 523   |
|    | 7) INVADOPODIA의 RHOG 신호(2016-2018) ······                    | · 525 |
|    | 8) SWATH-MS에 대한 다중 키나아제 바이오센서 분석의 확대 (2 of 2)(2016-2020)     | 527   |
|    | 9) CSHL 정량 이미징 : 세포에서 분자 과정(1998-2021) ······                | · 528 |
|    | 10) 종양 세포 - 대식 세포 커뮤니케이션의 새로운 형태로서 터널링 나노튜브의 역할              |       |
|    | (2016–2018)                                                  | · 530 |
|    | 11) 유방암 침범에서의 포르민의 역할(2016-2018)                             | · 531 |
|    | 12) AR-TIF2 상호작용의 억제자와 교란자를 확인하는 HCS (2015-2018)             | 532   |
|    | 13) 높은 처리량, 다중 센서, 라이브 셀 microRNA PROF를 위한 유전적               | 회로    |
|    | (2013–2017)                                                  | · 533 |
|    | 14) 종양 전이의 휴지와 치료 요법에 산소가 미치는 영향(2016-2019)                  | 534   |
|    | 15) 가공 단핵 세포를 이용한 종양 위치에서의 치료 및 지효성 사이토카인 전달                 |       |
|    | (2016–2020)                                                  | · 536 |
|    | 16) 3차원 정렬된 매트릭스에서의 세포 이식 메커니즘(2009-2020)                    | · 537 |
|    | 17) DNA 바코딩으로 다양한 엑소좀 분석(2016-2018) ·····                    | · 538 |
|    | 18) 개인화된 유방암 치료를 위한 관암종 칩 개요(2016-2018)                      | . 539 |
| 2- | -6. NIMH(National Institute of Mental Health)                | · 541 |
|    | 1) 바이오센서 적용을 위한 감마아미노부티르산(GABA) 효소 개발 (2016-2019) ······     | 541   |
|    | 2) 뇌절편에서의 다중 파라미터 바이오센서 영상(2016-2019)                        | · 542 |

| 3) HIV 치료 및 예방에 있어 투약 부착 측정을 위한 신규 무선 섭취 가능 센서 시스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :템    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (2015–2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 543 |
| 4) 상황별 공포 분화, 성차, 아세틸콜린(2001-2022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 545 |
| 5) 시냅스 소성 중 세포 특정 및 회로 특정 신호경로의 다중 체내 영상 (2016-2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • 546 |
| 6) 도파민 수용체의 구조와 기능(1995-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 547 |
| 7) 투명 미소전극 배열을 이용한 개별 세포로부터의 세포외배출 측정을 위한 프로토                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 타입    |
| 시스템 개발(2011-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 548 |
| 8) 스트레스 유발 수면 변화의 변연 조정(2001-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 549 |
| 9) HIV 치료 개선을 위한 저비용 의료기기의 행동적 측면(2013-2018) ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 551 |
| 10) 미소환상체 광학 공명기를 이용한 무표지, 고특정, 소분자 검출 (2016-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · 552 |
| 11) 막연관구아닐산키나아제(MAGUK) 구조 및 리간드결합의 단일 분자 분석                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| (2008–2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 554 |
| 12) 교차종 적응성에 따른 다중 회로 및 신경세포 유형 특정 AAV 벡터 생성                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| (2015–2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 555 |
| 13) 양극성장애 리튬치료의 세포 및 분자 메커니즘 이해를 위한 리튬 및 나트륨에 디                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H 한   |
| 신규 DNAzyme 센서(2016-2018) ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 556 |
| 14) 희귀 G단백질결합수용체(GPCR) GPR151의 소분자 조절인자 발견을 위한 고처리                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 영상(2016-2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 558 |
| 15) 정신 역학 교육 프로그램(1976-2022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 559 |
| 2-7. NIAID(National Institute of Allergy and Infectious Diseases)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 1) 스마트폰 바이오센서를 이용한 HIV 바이러스 부하에 대한 광결정 기반 현장 진단                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 검출(2016-2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 2) 고처리량 면역원성 검색을 통한 백신 개발 개선(2016-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 3) 바이러스 침입 및 체액면역반응에서 단순헤르페스바이러스(HSV) 당단백질의 기능                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| (1981–2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 4) 콜레라용 집안 효모 바이오센서(2015-2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 5) HIV/에이즈 현장 진단을 위한 마이크로칩 바이러스 감지 플랫폼 (2014-2020) ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 6) 세균 세포 내 항생제 농도에 대한 실시간 측정(2016-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 7) 독소 나노포어 구조 역학에 대한 분자 분석(2016-2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 8) T세포 사멸 확인을 위한 기계론적 기초 조사(R01)(2012-2022) ··································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 9) 백신 후보로서 HIV 당단백질의 최적화(2016-2020) ··································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 10) 바이러스 잠복기 및 조혈에 대한 숙주 세포 신호의 HCMV US28 조정                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1   |
| (2016–2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 572 |
| 11) 신호전달체계 표적화에 의한 항생제 강화작용(2016-2019) ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 12) HIV-1 바이러스 부하를 위한 휴대용 나노구조 광결정 디바이스 (2016-2020) ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 13) 휴대전화를 이용한 신속한 현장 말라리아 진단, 예측, 모니터링 (2015-2018) ·······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 14) 엡스타인-바바이러스(EBV) 침입에서 GP42와 등급2 HLA의 구조 및 기능 연구                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 510   |
| $\frac{1}{2}$ $\frac{1}$ |       |

|    |     | (2002–2018)                                                                     | 577     |
|----|-----|---------------------------------------------------------------------------------|---------|
|    | 15) | ) BNAb 유발을 위한 MPER 경첩 및 C-HELIX에 대한 면역원성 표적화                                    |         |
|    |     | (2016–2021)                                                                     | 578     |
|    | 16  | ) 전체가 자연적으로 발생하는 알레르기 특정 인간 면역글로불린E (IgE) 단클론항                                  | 췌       |
|    |     | (mAb)의 생성 및 특성화(2016-2018) ·····                                                | 580     |
| 2- | -8. | NSF(National Science Foundation)                                                | 582     |
|    | 1)  | (SCH: EXP: 공동연구): 신생아 생명을 위협하는 사건의 원격 감지를 위한 무선                                 |         |
|    |     | 네트워크 웨어러블 바이오센서 시스템 설계(2016-2018)                                               | 582     |
|    | 2)  | (CAREER): 연쇄 차등 검파를 이용한 고감도, 고선택성, 넓은 동적범위를 가진                                  |         |
|    |     | 저비용, 무표지, 복합 광공진 바이오센서(2016-2019)                                               | 584     |
|    | 3)  | 전세계 신경생리학 기능의 실시간 모니터링을 위한 바이오센서 데이터의 융합                                        |         |
|    |     | (2016–2018)                                                                     | 585     |
|    | 4)  | (I-CORPS): 가정용 건강 모니터링을 위한 저비용 바이오센서 (2016-2017)                                | 586     |
|    | 5)  | 나노입자의 효율적 제조를 위한 혈장 전기분해 사용(2016-2018)                                          | 587     |
|    | 6)  | (공동연구): 복합 무표지 분자 진단을 위한 자급형 미세유체 광공진 바이오센싱                                     |         |
|    |     | 플랫폼(2016-2018)                                                                  | 589     |
|    | 7)  | (SBIR PHASE I): 펩티드 앱타머 함유 수화젤 기반 단일 클론 항체 생성 모니터링                              | ]을      |
|    |     | 위한 인라인 센서(2016-2017)                                                            | 591     |
|    | 8)  | (SBIR PHASE I): 효모 내 표적 분자 생산의 직접 체내 검색을 위한 프로그램 가                              | <u></u> |
|    |     | 세포간 센서(2016-2017)                                                               | 592     |
| 2- | -9. | NIAMS(National Institute of Arthritits and Musculoskeletal and Skin Diseases) · | 594     |
|    | 1)  | 아토피피부염 염증 발생에서 Mrgpr 신호의 역할(2016-2021) ·····                                    | 594     |
|    | 2)  | 물리적신호전달과 골격근량 조절(2009-2020)                                                     | 595     |
|    | 3)  | 연골 유지 및 골관절염을 위한 티로신 키나아제 신호(2016-2018)                                         | 596     |
|    | 4)  | 근세포질그물 SR K 통로 기능(2006-2018) ·····                                              | 598     |
|    | 5)  | 뼈에서의 기계에너지변환기로서 일차 섬모(2012-2022)                                                | 599     |
|    | 6)  | 상처 반응에서 기계화학 신호의 정량분석(2015-2020)                                                | 600     |
| 2- | -10 | . NIBIB(National Institute of Biomedical Imaging and Bioengineering)            | 602     |
|    | 1)  | 표적 이미지 유도 종양 수술을 위한 히알루론산 기반 나노입자 (2015-2018)                                   | 602     |
|    | 2)  | 쇼그렌증후군 진단을 위한 분자각인 중합체 기반 센서 배열 (2016-2020)                                     | 603     |
|    | 3)  | 세포-생물재료 상호작용 매개에서 기계감응 신호의 역할 해명 (2016-2018)                                    | 604     |
|    | 4)  | 콘택트렌즈에 나노-플라스몬 센서를 이용한 HIV 바이러스 부하의 비표지, 비침습,                                   |         |
|    |     | 비용효율적 모니터링(2016-2018)                                                           | 605     |
|    | 5)  | 신규 탄소 나노튜브 기반 조사를 이용한 세포 노화의 단일세포 분석 (2016-2018) ·                              | 606     |
|    | 6)  | 살아있는 세포 및 조직에서 기능성 게놈 이미징을 위한 도구 (2015-2020)                                    | 608     |


| 2- | -11. | NIEHS(National Institute of Environmental Health Sciences)                                      | 609 |
|----|------|-------------------------------------------------------------------------------------------------|-----|
|    | 1)   | 위험 물질 노출에 대한 바이오마커(1997-2022)                                                                   | 609 |
|    | 2)   | 배아 발달 중 Nrf2 활성화: 메커니즘과 결과(2016-2021)                                                           | 610 |
|    | 3)   | 전신 영향 금속 독성의 경로로서 오염된 광산 폐기물 먼지 흡입 (2016-2021)                                                  | 611 |
|    | 4)   | 표적 특정 메틸화를 위한 piRNA 개발(2015-2019)                                                               | 613 |
|    | 5)   | 눈에 전위이식된 B세포에서 미토콘드리아 신호 영상(2015-2018)                                                          | 614 |
| 2- |      | NIAAA(National Institute on Alcohol Abuse and Alcoholism)                                       |     |
|    | 1)   | 실시간 혈중 알코올 모니터링을 위한 웨어러블 바이오센서 (2015-2018)                                                      | 615 |
|    | 2)   | 실험적으로 유도된 알코올 섭취 감소가 뇌 인지에 미치는 영향과 HIV 감염 노인의                                                   | -   |
|    |      | 음주 변화를 위한 임상 결과 및 동기부여(2011-2021)                                                               | 616 |
|    | 3)   | 알코올-HIV 연구를 위한 행동과학 및 생물통계학 자료 코어 (2012-2021)                                                   | 618 |
|    | 4)   | 음주운전의 위험성: 실험 연구부터 생활 환경에 이르기까지 (2010-2022)                                                     | 619 |
|    | 5)   | 5/8: 이니온 스트레스와 만성 알코올의 상호작용: 알코올의존에서 전전두엽 피질 호                                                  | 로   |
|    |      | 및 형성력의 스트레스 유도성 조절곤란(2012-2022)                                                                 | 620 |
| 2- | -13. | NICHD(Eunice Kennedy Shriver National Institute of Child Health and Hur                         | nan |
|    |      | Development) ·····                                                                              | 622 |
|    | 1)   | 신생아 패혈증 PID 및 AST를 위한 안티비오그람 기반 중심모세 혈관 체계                                                      |     |
|    |      | (2015–2018)                                                                                     | 622 |
|    | 2)   | 자폐증 생쥐 모형에서 선조제 글루탐산염 신호 및 인지(2016-2018)                                                        | 624 |
|    | 3)   | 생쥐의 마취유발 및 수술유발 인지 장애에 대한 바이오마커로써의                                                              |     |
|    |      | TAU/P-TAU(2016-2021)                                                                            | 625 |
|    | 4)   | 임상시험 향상을 위한 재활연구 자원(REACT)(2015-2020)                                                           | 627 |
|    | 5)   | 발달 중인 4형 콜라겐에 가해지는 힘의 역할에 대한 시각화 및 해명 (2016-2018)                                               | 628 |
| 2- | -14. | $NIDCD (National\ Institute\ on\ Deafness\ and\ Other\ Communication\ Disorders)\ \cdots\cdots$ | 630 |
|    | 1)   | 약물유발 털세포 사멸 조절에서의 프로토 표적 조사(2014-2017)                                                          | 630 |
|    | 2)   | 청각 및 전정계에서의 비선형 동역학과 코드화(2016-2017)                                                             | 631 |
|    | 3)   | 사족 기능의 미오신-X와 분자적 기초(1997-2018)                                                                 | 632 |
|    |      | 신경돌기 및 슈반세포 정렬을 지시하는 광중합 유발 국소해부학 (2013-2018)                                                   |     |
|    |      | Ⅲ형 미각세포 기능에 대한 해명(2016-2018)                                                                    |     |
| 2- |      | NIDA(National Institute on Drug Abuse)                                                          |     |
|    |      | 약물중독에서 도파민 전달체의 MRI을 위한 나노가공된 신경탐침 (2015-2019)                                                  |     |
|    |      | 아편유사제 수용체의 세포내이입 조절 메커니즘(2000-2021)                                                             |     |
|    |      | 아편유사제 및 아드레날린수용체의 막수송과정(1997-2019)                                                              |     |
|    |      | 보상 결정 중 기저측 편도 빠른 글루탐산염 신호(2013-2018)                                                           |     |
| 2- |      | NIA(National Institute on Aging)                                                                |     |
|    |      | 알츠하이머병의 조기 진단을 위한 나노와이어 센서 배열 기반 측정 (2016-2018) …                                               |     |
|    | 2)   | 노인을 위한 암 모터 재활, 오락, 인지 체계(2010-2018)                                                            | 643 |
|    |      |                                                                                                 |     |

| 3) 알츠하이머병에서 NRF2 변형의 활성제(2016-2018) ······                                       | 645      |
|----------------------------------------------------------------------------------|----------|
| 4) 산화 스트레스와 골관절염 발달 (2012-2022)                                                  | 645      |
| 2-17. OD(NIH Office of the Director) ·····                                       | 647      |
| 1) SHN3에 의한 골격 형성 조정(2015-2020) ·····                                            | 647      |
| 2) 고등학교 연구 계획(2016-2021) ·····                                                   | 648      |
| 2-18. NIDCR(National Institute of Dental and Craniofacial Research)              | 650      |
| 1) 일차 섬모의 고리형AMP(cAMP) 신호 극소영역 조사(2016-2018) ··································· | 650      |
| 2) GALNAC 전이효소-2/3에 의한 O-당화를 표적으로 하는 약물-유사 조정자                                   |          |
| (2016–2018)                                                                      | 651      |
| 2-19. NEI(National Eye Institute)                                                | ···· 652 |
| 1) 바이러스성으로 운반된 ARCLIGHT A242를 이용해 S-CONE을 입력한 레티놀                                |          |
| 갱글리언 세포의 기능적 이미징(2014-2017)                                                      | ···· 652 |
| 2) 각막 상피 손상 응답 시그널링에서의 노이즈 정보 확산 (2015-2020)                                     | 653      |
| 2-20. NCATS(National Center for Advancing Translational Sciences)                | 655      |
| 1) SCRIPPS 중개 과학 연구소(2013-2018) ·····                                            | 655      |
| 2) 피츠버그 대학교 조직 박리 실험 센터(2016-2018)                                               | 656      |
| 2-21. NHGRI(National Human Genome Research Institute)                            |          |
| 1) 개인 역학 레귤롬을 위한 센터(2014-2019)                                                   | 657      |
| 2-22. 기관 미상 프로젝트                                                                 | 658      |
| 1) 알코올성 간질환에서 효소를 전환하는 TNF 알파의 역할 (2014-2018) ·············                      | 658      |
| 2) 신경화학적 통제를 위한 연성 다중센서 모드 신경 장치(2015-2019)                                      | 659      |
| 3) 죽상동맥경화증에서 구리(Cu) 전달체 단백질의 역할(2011-2019) ······                                | 661      |
| 4) 살모넬라 독력의 OmpR과 ssrB 조절(2009-2017) ······                                      | 663      |
| 3. 연도 표기 미상 프로젝트                                                                 | 665      |
| 3-1. NIAID(National Institute of Allergy and Infectious Diseases)                | 665      |
| 1) 조혈세포에서의 RNAi 검색 ·····                                                         |          |
| 3-2. NCI(National Cancer Institute) ·····                                        | 669      |
| 1) CCR 공초점현미경 CORE ·····                                                         | 669      |
| 2) 간암 이질성 및 아형에서 암 줄기세포의 역할                                                      | 671      |
| 3-3. NIAAA(National Institute on Alcohol Abuse and Alcoholism)                   |          |
| 1) 제2메신저에 의한 신경 이온통로 조정                                                          |          |
| 2) 살아있는 세포 내 단백질 간 상호작용의 FRET 영상                                                 |          |
| 3-4. NIBIB(National Institute of Biomedical Imaging and Bioengineering)          |          |
| 1) 복합 단백질 상호작용 연구를 위한 다방법 접근                                                     |          |
| 3-5. NHLBI(National Heart Lung and Blood Institute)                              |          |
| 1) 세포부착의 기계적 조절                                                                  |          |

| 2)   | 생물물리학 코어 시설683                                                            |   |
|------|---------------------------------------------------------------------------|---|
| 3-6. | NIEHS(National Institute of Environmental Health Sciences) 684            |   |
| 1)   | 뇌에서 신경통로 및 수용체의 조정                                                        |   |
| 3-7. | NICHD(Eunice Kennedy Shriver National Institute of Child Health and Human |   |
|      | Development)                                                              | 1 |
| 1)   | 세포 조절에서의 포스포이노시타이드-칼슘 신호                                                  | 1 |
| 3-8. | NIDA(National Institute on Drug Abuse)                                    | ı |
| 1)   | 중독성 약물의 전기 생리학 및 전기화학 연구689                                               | 1 |



| 本星      | 29                                                          |
|---------|-------------------------------------------------------------|
|         |                                                             |
| <丑1-1>  | 조사항목 개요와 예시                                                 |
| <翌1-2>  | 미국의 연간 바이오센서 연구 프로젝트 수 추이(2004~2017)30                      |
| <班1-3>  | 기관별 바이오센서 연구 프로젝트 집행 현황(2004~2017)(단위 : 개, 달러) 30           |
| <翌1-4>  | 집행 기관별 바이오센서 연구 프로젝트 현황(2017)(단위 : 개, 달러)                   |
| <翌1-5>  | 담당 기관별 바이오센서 연구 프로젝트 현황(2017)(단위 : 개, 달러)33                 |
| <翌1-6>  | 수행 기관별 바이오센서 연구 프로젝트 현황(2017)(단위 : 개, 달러)                   |
| <翌1-7>  | 미국 R&D 예산 개요 (단위 : 백만 달러)39                                 |
| <翌1-8>  | 미국 R&D 예산 세부 내용 (단위 : 백만 달러)                                |
| <翌1-9>  | 주요 비국방 R&D부처의 연구개발단계별 투자 현황 (단위 : 백만 달러) $\cdots \cdots 41$ |
| <班1-10> | > 섹터와 투자 주체를 기준으로 한 2015년 미국 R&D 투자 (단위 : 십억 달러) ···· 45    |
| <翌1-11> | › 연구재단 연구개발예산 현황 (단위 : 백만 달러)··················48           |
| <翌1-12> | <ul><li>국립보건원 연구개발예산 현황 (단위 : 백만 달러)</li></ul>              |
| <班1-13> | > 국립보건원 연구지원 형태별 연구개발예산 현황 (단위 : 백만 달러, %)50                |
| <班1-14> | › 국립보건원 주요 연구지원 프로그램 유형 ······51                            |
|         |                                                             |
| Ⅱ. 미국   | 바이오센서 기술개발 연구테마55                                           |



|        | 2                                                                             | Q          |
|--------|-------------------------------------------------------------------------------|------------|
|        | ►<br>> 주별 바이오센서 연구 프로젝트 수 그래픽(2004~2017) ···································· |            |
|        | > 2004~2017년 바이오센서 연구과제 주요 키워드 ···································            |            |
|        | > 2017년 연구 프로젝트 주요 키워드 ···································                    |            |
|        | > 2017년 미국 과학 기술 분야별 연방 정부 지출 분야 ········                                     |            |
| <그림1-5 | > 미국의 투자 출처에 따른 지출 추이(1953~2015) (단위 : 십억 달러)                                 | 43         |
| <그림1-6 | > 미국 R&D 투자액 중 연방과 기업의 비율 추이(1953~2015) ······                                | 43         |
| <그림1-7 | > 연방의 예산 기능을 통한 R&D 투자 추이(1955~2017) (단위 : 십억 달러) ····· 4                     | 44         |
| <그림1-8 | > 국립보건원 연구 지원 프로그램 구조                                                         | 50         |
|        |                                                                               |            |
| Ⅱ. 미국  | 바이오센서 기술개발 연구테마5                                                              | <b>i</b> 5 |