목차

I	. 글로벌 xEV 시장의 최근동향	29
	1. 전기자동차, 하이브리드자동차 시장의 흐름	· 29
	1-1. 최근의 오토쇼 트랜드	· 29
	1) 2012년 북미 국제 오토쇼'(NAIAS) ······	· 29
	1-2. 글로벌 xEV시장 동향과 전망	• 30
	2. 주요국의 xEV 시장 동향	• 36
	2-1 주요국의 전기자동차 시장동향	• 36
	1) 개요	• 36
	2) 해외동향	• 38
	(1) 일본	• 38
	(2) 중국	
	(3) 미국	• 40
	(4) 유럽	• 42
	3) 국내 동향	• 45
	2-2. 주요국의 하이브리드자동차 시장동향	• 48
	1) 개요	
	2) 해외동향	• 50
	(1) 일본	
	(2) 중국	• 52
	(3) 미국	· 53
	(4) 유럽	• 55
	3) 국내 동향	• 56
	2-3. 해외 주요국의 xEV 관련 지원정책 동향	• 60
	1) 일본	· 61

2) 중국62
3) 독일64
2-4. 한국의 최근 정책 동향65
1) 개요65
2) 국내 준중형 전기차 개발전략67
(1) 2014년 준중형급 양산목표67
(2) 준중형 전기차 개발 프로젝트 세부사업 개요69
3) 지경부, 전기차 2종 첫 세제지원 대상으로 지정 70
Ⅱ. 주요 메이커별 전기자동차 개발동향79
1. 국내 전기자동차 개발동향 79
1-1. 현대·기아 자동차 ·······79
1) 현대 자동차79
(1) 기업현황79
(2) 전기자동차 개발 현황80
2) 기아 자동차
(1) 기업현황 82
(2) 전기자동차 개발 현황83
(3) 현대·기아차 EV 개발 전략 88
1-2. 르노 삼성91
1) 기업 현황91
2) 전기자동차 개발 현황 92
3) EV 개발 전략 ······94
1-3. 한국지엠96
1) 기업현황96
2) 전기자동차 개발 현황97
3) EV 개발 전략 ······ 98
1-4. 쌍용자동차
2. 해외 전기자동차 개발동향102
2-1. 일본 ····· 102
1) 닛산102
(1) 기업현황102
(2) 전기자동차 개발 현황
(3) EV 개발 전략 ···································
2) TOYOTA107

	(1) 기업현황	107
	(2) 전기자동차 개발 현황	110
	(3) EV 개발 전략 ·····	110
	3) 혼다	113
	(1) 기업현황	113
	(2) 전기자동차 개발 현황	115
	4) 미쓰비시	118
2-	-2. 미국 ·····	120
	1) Ford	120
	(1) 기업현황	120
	(2) 전기자동차 개발 현황	121
	(3) EV 개발동향 ······	123
	2) 크라이슬러	124
	(1) 기업현황	124
	(2) 전기자동차 양산 현황	126
	(3) EV 개발 전략 ·····	128
	3) GM	129
	(1) 기업현황	129
	(2) EV 개발 전략 ·····	130
2-	-3. EU ·····	133
	1) BMW	133
	(1) 기업현황	133
	(2) 전기자동차 개발 현황	134
	(3) EV 개발 전략 ·····	137
	2) 벤츠	138
	(1) 기업현황	138
	(2) 전기자동차 개발 현황	139
	(3) EV 개발 전략 ·····	141
	3) 폭스바겐	141
	(1) 기업현황	141
	(2) 전기자동차 개발 현황	142
	(3) EV 개발동향 ·····	146
	4) 아우디	
	(1) 기업현황	147
	(2) 전기자동차 개발 현황	148

(3) EV 개발 전략 ···································
5) 르노(Renault S.A.S)154
(1) 기업현황154
(2) 전기자동차 개발 현황
(3) EV 개발 전략 ···································
6) Volvo
(1) 기업현황165
(2) 전기자동차 개발 현황
(3) EV 개발 전략 ···································
7) Rolls-Royce Ltd
(1) 기업현황167
(2) 전기자동차 개발 현황
(3) EV 개발동향 ············170
8) 마이크로 컴팩트카(Micro Compact Car AG:MCC) ······ 170
(1) 기업현황170
(3) EV 개발동향 ············172
2-4. 인도173
1) TATA MOTORS
(1) 기업현황173
(2) 전기자동차 개발 현황
(3) EV 개발동향 ···········175
2-5. 중국177
1) 비야디(BYD)자동차 ····································
(1) 기업현황177
(2) EV 개발동향 ····································
Ⅲ. 하이브리드자동차(hev, phev) 개발동향 ····································
1. 하이브리드 전기차 개요와 2012년 국내 동향 ···································
1. 이어르니드 전기차 개요 ···································
1-2. 2012년 국내 하이브리드 전기차 동향186
2. 하이브리드 자동차 기술동향 ····································
2. 이 카드니스 자 8차 기월 8 8 160 3. 주요 하이브리드자동차 모델별 분석
3-1. 일본 ···································
1) TOYOTA
(1) 프리우스-Prius Plug in Hybrid ······ 191
(1) — 1 — 1 1 1 1 1 1 1 1

	(2) Lexus CT200h	198
	(3) 2012년 "아쿠아" 출시	202
	2) HONDA ·····	204
	(1) HONDA CR-Z ······	204
	(2) HONDA INSIGHT	207
	(3) HONDA CIVIC Concept	210
	3) SUBARU ·····	211
	(1) Hybride Tourer Concept	211
	4) 닛산	212
3-	-2. 미국 ·····	216
	1) GM	216
	(1) Buick Regal eAssist	216
	2) FORD	217
	(1) C-MAX Hybrid ·····	217
3-	-3. EU ·····	219
	1) BMW	219
	(1) BMW 비전 이피션트 다이내믹스	219
	(2) BMW 액티브하이브리드 X6 ·····	220
	(3) BMW 액티브하이브리드 7(Active Hybrid 7) ······	220
	(4) BMW 5시리즈 플러그 인 하이브리드 ······	222
	2) Mercedes-Benz	223
	3) 아우디	224
	(1) A8 하이브리드 ·····	224
	4) 푸조	225
	(1) 3008 하이브리드4	225
	5) 포르쉐	226
	(1) 포르쉐 911GT3 R 하이브리드 ·····	226
	(2) 918 RSR 하이브리드 콘셉트카 ·····	227
	(3) 918 스파이더 하이브리드	228
	(4) 카이엔 S 하이브리드 ·····	229
3-	-4. 중국	231
	1) BYD	231
	(1) SUV S6DM	231
3-	-5. 한국	
	1) 현대	232

(1) 쏘나타 하이브리드232
2) 기아
(1) K5 하이브리드233
3) 한국지엠
(1) 알페온 e어시스트 ····· 235
IV. xEV 관련 기술개발 테마 239
1. PHEV용 초고효율 엔진기술 개발 239
1-1. 개요
1) 개념 및 정의
2) 지원 필요성241
1-2. 연구목표 및 내용244
1) 최종 목표 및 내용
(1) 최종 목표
(2) 확보기술 내용
2) 연도별 목표 및 내용246
1-3. 연구기간 및 연구비
1) 연구기간 및 연구비
1-4. 기대효과
1) 연구개발 결과의 활용방안254
2) 기대효과
(1) 기술적 기대효과
(2) 기타 기대효과
2. 고속주행용 (ESS) 열제어 부품소재 개발 ·······258
2-1. 개요 ······ 258
1) 개념 및 정의
2) 기술개발 배경과 지원 필요성261
2-2. 연구목표 및 내용262
1) 최종 목표 및 내용262
(1) 최종 목표262
(2) 개발 내용
(3) 확보기술 내용
2) 연도별 목표 및 내용264
(1) 종합목표264
(2) 연도별 목표265

2-3. 연구기간, 연구비	267
1) 연구기간 및 연구비	267
2-4. 기대효과	267
1) 연구개발 결과의 활용방안	267
2) 기대효과	267
(1) 기술적 기대효과	267
(2) 경제적 기대효과	268
(3) 기타 기대효과	268
3. AER 연장형 PHEV용 모터·변속기 일체형 고효율/고성능 구동시스템	269
3-1. 개요 ·····	269
1) 개념 및 정의	269
2) 지원 필요성	278
3-2. 연구목표 및 내용	279
1) 최종 목표 및 내용	279
2) 연도별 목표 및 내용	282
3-3. 연구기간, 연구비	288
1) 연구기간 및 연구비	288
3-4. 기대효과	288
1) 연구개발 결과의 활용방안	288
2) 기대효과	289
(1) 기술적 기대효과	289
(2) 경제적 기대효과	290
(3) 기타 기대효과	291
4. 배터리 교환식 차량용 휠 모터 구동시스템 개발	292
4-1. 개요	292
1) 개념 및 정의	292
2) 지원 필요성	297
4-2. 연구목표 및 내용	301
1) 최종목표 및 내용	301
2) 연도별 목표 및 내용	306
가. 세부 1과제	
(1) 최종 목표	312
(2) 연도별 목표 및 내용	
나. 세부 2과제	
(1) 최종 목표	321

(2) 연도별 목표 및 내용
4-3. 연구기간, 연구비331
1) 연구기간 및 연구비331
4-4. 기대효과
1) 연구개발 결과의 활용방안331
2) 기대효과332
(1) 기술적 기대효과332
(2) 경제적 기대효과
(3) 기타 기대효과333
5. 온라인 전기자동차 기반 단기수송시스템 기술개발 335
5-1. 개요
5-2. 세부 과제별 개발 목표와 내용
1) 온라인 전기버스용 급·집전시스템 기술개발 ······336
(1) 개요 및 필요성
(2) 개발목표
(3) 개발내용(Spec. 포함) ···································
(4) 주요결과물
(5) 기타
2) 온라인 전기버스용 다중 동력원 전력공급 및 제어장치 개발 338
(1) 개요 및 필요성
(2) 개발목표
(3) 개발내용(Spec. 포함) ···································
(4) 주요 결과물
(5) 기타
3) 온라인 전기버스용 대용량 전기구동 시스템 개발 340
(1) 개요 및 필요성
(2) 개발목표
(3) 개발내용(Spec. 포함) ···································
(4) 주요 결과물 341
(5) 기타
4) 라인 전기버스용 전동공조 시스템 기술 개발 341
(1) 개요 및 필요성
(2) 개발목표
(3) 개발내용(Spec. 포함) ···································
(4) 주요 결과물

(5) 기타	343
5) 온라인 전기버스용 시스템 통합 및 평가기술 개발	343
(1) 개요 및 필요성	343
(2) 개발목표	343
(3) 개발내용(Spec. 포함) ·····	343
(4) 주요 결과물	344
(5) 기타	345
6. Hybrid차 및 전기차용 차세대 차량용 전력모듈	346
6-1. 개요 ····	
1) 개념 및 정의	346
2) 기술개발 배경과 필요성	349
6-2. 연구목표 및 내용	350
1) 최종 목표 및 내용	350
(1) 최종 목표	350
(2) 확보기술 내용	350
2) 연도별 목표 및 내용	352
(1) 기술개발 종합목표	352
(2) 연도별 목표	353
6-3. 연구기간, 연구비	356
1) 연구기간	356
6-4. 기대효과	356
1) 연구개발 결과의 활용방안	356
2) 기대효과	356
(1) 기술적 기대효과	356
(2) 경제적 기대효과	357
7. 자동차용 고효율 열방출 및 공급 기술 동향	358
7-1. 개요 ·····	358
1) 개념 및 정의	358
2) 지원 필요성	361
7-2. 연구목표 및 내용	362
1) 최종 목표 및 내용	362
(1) 최종 목표	362
(2) 확보기술 내용	363
2) 연도별 목표 및 내용	364
(1) 기술개발 종합목표	364

(2) 연도별 목표
7-3. 연구기간, 연구비
1) 연구기간 및 연구비
7-4. 기대효과
1) 연구개발 결과의 활용방안
2) 기대효과372
(1) 기술적 기대효과 372
(2) 경제적 기대효과
(3) 기타 기대효과375
8. 전기차 공동이용 모델 개발 및 시범운영376
8-1. 개요 ···································
1) 개념 및 정의
8-2. 연구목표 및 내용
1) 최종목표 및 내용
2) 연도별 목표 및 내용
8-3. 연구기간 및 연구비
9. 국내 충전인프라 보급을 위한 한국형 모델 개발380
9-1. 개요
1) 개념 및 정의
2) 연구목표 및 내용
(1) 최종목표 및 내용
3) 연도별 목표 및 내용
9-2 연구기간 및 연구비
V. 전기차용 이차전지와 충전기술 동향 ···································
1. xEV용 2차 전지 시장동향 및 관련업체 동향
1-1. EV용 2차 전지 개요 및 산업동향
1) 개요
2) 리튬 2차 전지 산업동향
(1) 국내외 시장 최근 동향
(2) 리튬이차전지 산업의 주요 이슈
3) 향후전망
1-2. 주요 이차전지업체 동향
1) SB리모티브(주) ····································
2) (주)LG화학 ····································

	3)	SK이노베이션(주)	105
	4)	(주)코캄	108
	5)	Automotive Energy Supply Co. ———————————————————————————————————	109
	6)	산요전기4	11
	7)	Panasonic EV Energy	11
	8)	GS Yuasa ····	12
1	-3.	리튬이차전지 주요 핵심소재별 동향	13
	1)	개황	13
	2)	이차전지용 양극 소재 시장동향4	15
		(1) 국내시장동향4	116
		(2) 해외 시장 동향	18
	3)	이차전지요 음극소재 시장동향4	120
		(1) 시장 동향	121
	4)	이차전지용 분리막 시장동향4	122
		(1) 개요	122
		(2) 시장 동향	126
		(3) 기술동향	128
	5)	기타 이차전지용 소재 동향4	129
		(1) 이차전지용 나노소재 개념 및 정의4	129
		(2) 시장 동향	130
1	-4.	국내 이차전지 기술 개발 동향	132
	1)	기술 개발 방향과 목표4	133
	2)	리튬이차전지 기술의 단계별 개발 목표4	134
		(1) 단계별 연구개발 기간4	136
		(2) 단계별 기술수준 목표	137
		(3) 단계별 연구개발 목표4	138
		(4) 세부추진 전략	139
	3)	이차전지 분야 주요 연구개발 추진 현황	40
1	-5.	리튬이차전지 국내외 서플라이 체인과 주요업체 현황4	41
	1)	넥스콘테크놀러지(주)	41
	2)	(주)뉴인텍	142
	3)	대정화금(주)	142
	4)	동양이엔피(주)	143
		(주)벡셀	
	6)	(주)만도	144

7) (주)삼화콘덴서공업444	
8) 상신이디피(주)445	
9) (주)서원인텍445	
10) (주)에코프로	
11) (주)엘앤에프 ······ 446	
12) (주)와이즈파워	
13) (주)이랜텍	
14) 인지컨트롤스(주) 448	
15) 일진머티리얼즈(주)448	
16) (주)코디에스	
17) 테크노세미켐(주)	
18) (주)파워로직스	
19) 한화케미칼(주)450	
20) (주)휘닉스소재 ······ 451	
21) 오씨아이머티리얼즈(주)451	
1-6. 국내 이차전지산업 육성전략452	
1) 비전 및 추진전략452	
2) 이차전지산업 통합 Road map 추진460	
2. 전기차 충전기술과 인프라 동향	
2-1. 개요	
2-2. 충전인프라 해외 동향과 구축 사례465	
1) 중국465	
2) 미국	
3) 유럽(EU) ····································	
4) 일본 ·······474	
5) 이스라엘475	
6) 기타(싱가포르)476	
2-3. 국내 충전인프라 구축 동향과 전망478	
1) 국내 충전인프라 구축동향478	
2) KS 표준 제정과 주요 내용 ···································	
(1) 주요 경과478	
3) 전기차 충전시스템 관련 용어 및 표준 주요 내용480	
(1) 충전시스템 용어 정의480	
(2) 표준 주요 내용481	
4) 참여업체 및 설치사례	

5) 국내 충전시스템 개발 현황
3. 온라인 전기차(OLEV) 개발동향과 전기차 무선전력 충전기술 486
3-1, 개요
3-2. 해외 관련 기술 및 시장 동향 491
3-3. 전기차 무선충전 기술 개발 동향
1) 개요
2) 주차장이용 무선충전 기술500
VI. 부록[참고자료] ······ 505
1. 8대 국가전략산업 중 전기차 분야 표준화 로드맵505
1-1. 8대 국가전략산업과 표준화 로드맵 개요 505
1-2. 8대 국가전략산업별 표준화 로드맵 506
1) 스마트그리드506
2) 전기자동차506
3) 원자력506
4) 3D산업 ······507
5) 클라우드컴퓨팅507
6) 스마트미디어508
7) 스마트물류508
8) 스마트의료정보509
1-3. 전기차 분야 표준화 로드맵
1) 추진배경 및 필요성509
2) 주요 이슈사항510
3) 표준화 프레임 워크
(1) 비전513
(2) 개념 모델 514
(3) 기능설정
(4) 표준조사 및 분석515
(5) 갭분석 515
(6) 우선실행 계획
4) 추진체계 및 표준화 계획518
(1) 개요518
(2) 우선실행 표준 추진계획
5) 표준화 로드맵524
1-4. 전기차 충전시스템 국제 표준 동향과 대응방안526

	1) 충전인프라 표준화 우선순위	526
	2) 전기차 국제 표준 일정	550
	1-5. 스마트그리드분야의 전기차 표준화 로드맵	550
2.	. 전기차 사업 관련 참고자료	551
	2-1. 2012년 전기자동차 구매계획 양식	551
	2-2. 2012년도 출시 예정 전기자동차	552
	2-3. 자동차관리법 시행규칙 제2조	553
	2-4. 2011년 전기자동차 및 충전인프라 구축사업 보조금 업무처리 지침	555
	2-5. 자동차연비 표시제도 개선	574

표목차

I. 글로벌 xEV 시장의 최근동향2	7
<표1-1> 주요 완성차업체의 전기자동차 출시 및 투입계획3	8
<표1-2> 일본 연비규제 동향 3:	9
<표1-3> 미국 연비규제 동향 4	2
<표1-4> 유로6 배출 기준4	3
<표1-5> 메이커별 유럽 CO2 개선 목표치 4	4
<표1-6> 전기자동차 양산계획4	5
<표1-7> 한국 승용차 연도별 평균연비 및 이산화탄소 배출량 현황4	6
<표1-8> 전기자동차 세부기술 및 기술로드맵 ·······4	6
<표1-9> 글로벌 친환경차 시장 전망4	9
<표1-10> 일본 환경규제에 따른 하이브리드자동차 수요 전망5	1
<표1-11> 중국 환경규제에 따른 하이브리드자동차 수요 전망5	2
<표1-12> 미국 환경규제에 따른 하이브리드자동차 수요 전망5.	4
<표1-13> 유럽 환경규제에 따른 하이브리드자동차 수요 전망5	6
<표1-14> 한국 환경규제에 따른 하이브리드자동차 수요 전망5	6
<표1-15> 한국 하이브리드자동차 시장규모 추이 및 판매대수5	7
<표1-16> 하이브리드자동차 국내시장 전망5	8
<표1-17> 주요국 전기자동차 정책 현황6	
<표1-18> 일본의 차세대 자동차 육성 6대 전략 개요6	1
<표1-19> 중국 친환경자동차 발전단계별 주요 목표6	
<표1-20> 정부의 전기자동차 산업 활성화 정책6	5
<표1-21> 실증사업 대상 친환경자동차 현황6	6
<표1-22> BlueOn, 닛산 리프와 준중형급 전기차 성능비교6	
<표1-23> 컨소시엄 별 주요 투자 계획(안)······6	8

<표1-24> 세제지원 비교 예시70
<표1-25> SM3ZE와 리프 주요 제원 비교 71
<표1-26> 기아차 레이와 블루온 주요 제원 비교72
Ⅱ. 주요 메이커별 전기자동차 개발동향79
<표2-1> 현대 자동차 일반현황 80
<표2-2> 기아 자동차 일반현황 82
<표2-3> 르노삼성자동차 일반현황92
<표2-4> 한국지엠 일반현황96
<표2-5> NISSAN 일반현황 ····································
<표2-6> TOYOTA 일반현황108
<표2-7> 혼다 일반현황 ····································
<표2-8> Ford 일반현황 ···········120
<표2-9> 크라이슬러 일반현황125
<표2-10> GM의 일반현황 ·············130
<표2-11> 쉐보레볼트의 주요 사양131
<표2-12> BMW 일반현황 ·······133
<표2-13> 다임러 AG 일반현황138
<표2-14> 폭스바겐 일반현황142
<표2-15> 아우디 일반현황·······148
<표2-16> Renault 일반현황 ··········155
<표2-17> Volvo 일반현황 ···········165
<표2-18> 비야디(BYD) 일반현황178
Ⅲ. 하이브리드자동차(hev, phev) 개발동향 ····································
<표3-1> 가솔린자동차 VS 하이브리드자동차의 연비 비교표186
<표3-2> 기능에 따른 HEV 분류 ···································
<표3-3> 국내 하이브리드 출시일정187
<표3-4> 세계 주요 자동차 OEM xEV계획 및 배터리 공급업체189
<표3-5> 하이브리드자동차에 사용되는 전기모터190
<표3-6> K5 적용 시스템234
IV. xEV 관련 기술개발 테마 ···································
<표4-1> 기술격차 축소 목표 ···································
<표4-2> 기술격차 축소 목표 ···································

<표4-3> 통합기술 청사진과의 연관성	279
<표4-4> 기술개발 최종 목표	280
<표4-5> 기술격차 축소 목표	289
<표4-6> AER 연장형 PHEV 시장 전망 ·····	291
<표4-7> 기술격차 축소 목표	332
<표4-8> 시내버스 운행비용 절감효과 검토	334
<표4-9> 시내버스 CO2 발생량 검토	334
<표4-10> 기술격차 축소 목표	356
Ⅴ. 전기차용 이차전지와 충전기술 동향	
<표5-1> 전지종류	
<표5-2> 중대형 리튬이차전지가 구비해야 할 특성	
<표5-3> 이차전지 제조 및 부가가치 과정	
<표5-4> 주요 4개국의 리튬이차전지 정책 발표 현황	
<표5-5> 이차전지 4대 핵심 소재별 주요기업 시장 점유율	390
<표5-6> 이차전지 4대 핵심 소재별 국산화율(%)	390
<표5-7> 국내 전지산업 소재부문별 기업 분포	391
<표5-8> 주요 자동차용 리튬이차전지 업체의 사업계획 및 최근 동향	
<표5-9> 주요국 이차전지 분야별 기술개발 동향	393
<표5-10> 세계 주요 리튬이차전지업체와 자동차업계의 제휴 현황	
<표5-11> 주요 업체간 전략적 제휴 사례	
<표5-12> 주요 전기차용 전지 공급현황	
<표5-13> ESS용 이차전지의 활용	396
<표5-14> SB리모티브(주)의 기업현황	
<표5-15> 삼성SDI(주)의 기업현황	
<표5-16> (주)LG화학 기업현황	
<표5-17> SK에너지(주) 기업현황 ······	
<표5-18> (주)코캄 기업현황	
<표5-19> Automotive Energy Supply Co. 일반현황	
<표5-20> 산요전기 일반현황	
<표5-21> GS Yuasa 일반현황	
<표5-22> 업체별 판매현황	
<표5-23> 기존 연구개발 과제 현황	440
<표5-24> 리튬이차전지 국내외 서플라이 체인	441

VI.	부록[참고지	∤료]	•••••	•••••	•••••	50)5
< 표	6-1> 2012년	연비등급 7]쥬	• • • • • • • • • • • • • • • • • • • •		5′	75

그림목차

I. 글로벌 xEV 시장의 최근동향	· 27
<그림1-1> 전기자동차 판매추이와 2012년 출시 예정 차종	·· 32
<그림1-2> 세계 전기자동차 시장규모 전망)	34
<그림1-3> EV, HEV, PHEV 시장 전망) ······	35
<그림1-4> 대륙별 전기자동차 시장 전망 (2015년)	36
<그림1-5> 친환경차 동력원별 시장수요 전망	37
<그림1-6> 미국 전기자동차 시장규모 전망	·· 41
<그림1-7> 연도별 NOx 배출량 기준	43
<그림1-8> 국가별 하이브리드자동차 판매 추이	48
<그림1-9> 에너지절감형 • 신에너지 차량 지원을 위한 중국의 계획안	·· 52
<그림1-10> 미국 하이브리드판매현황	55
<그림1-11> 한국 하이브리드 자동차 시장규모 전망)	58
Ⅱ. 주요 메이커별 전기자동차 개발동향	
	• 79
Ⅱ. 주요 메이커별 전기자동차 개발동향	• 79 •• 81
Ⅱ. 주요 메이커별 전기자동차 개발동향 <그림2-1> BlueOn 이미지 및 스펙	• 79 •• 81 •• 84
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	• 79 •• 81 •• 84 •• 85
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	· 79 ·· 81 ·· 84 ·· 85 ·· 86
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	· 79 ·· 81 ·· 84 ·· 85 ·· 86 ·· 87
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	· 79 ·· 81 ·· 84 ·· 85 ·· 86 ·· 87 ·· 88
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	·· 79 ·· 81 ·· 84 ·· 85 ·· 86 ·· 87 ·· 88 ·· 93 ·· 97
Ⅱ. 주요 메이커별 전기자동차 개발동향 <그림2-1> BlueOn 이미지 및 스펙 <그림2-2> KIA-Pop 콘셉트카 이미지 및 스펙 <그림2-3> NAIMO 콘셉카 이미지 및 스펙 <그림2-4> VENGA 콘셉트카 이미지 및 스펙 <그림2-5> 전기차"레이"이미지 및 스펙 <그림2-6> 현대기아차 전기자동차 개발 계획 <그림2-7> SM3 전기자동차 이미지 및 스펙 <그림2-8> 라세티 프리미어 이미지 및 스펙 <그림2-9> 쌍용차의 전기자동차 코란도C 콘셉트카	·· 79 ·· 81 ·· 84 ·· 85 ·· 86 ·· 87 ·· 88 ·· 93 ·· 97
Ⅱ. 주요 메이커별 전기자동차 개발동향 ····································	·· 79 ·· 81 ·· 84 ·· 85 ·· 86 ·· 87 ·· 88 ·· 93 ·· 97

<그림2-11>	쌍용차의 전기자동차 개발 추진 로드맵 101
<그림2-12>	ESFLOW 콘셉카 이미지 및 스펙 ·············104
<그림2-13>	리프 이미지105
<그림2-14>	닛산의 무접점 충전 시스템······106
<그림2-15>	도요타 RAV4 EV Prototype ··········111
<그림2-16>	도요타 가정용 충전시스템112
<그림2-17>	혼다의 태양광 충전 시스템117
<그림2-18>	Fit EV 이미지 및 스펙 ·······117
<그림2-19>	미쓰비시의 소형 픽업트럭 전기차119
<그림2-20>	focus EV 이미지 및 스펙 ·······123
<그림2-21>	포드의 가정용 충전기124
<그림2-22>	피아트500 이미지 및 스펙
<그림2-23>	GM의 세일(Sail) 컨셉트카 ····· 129
<그림2-24>	BMW Active E 이미지 및 스펙135
<그림2-25>	BMW i3 및 i3 모듈 이미지 ·······136
<그림2-26>	A 클래스 e-cell 이미지 및 스펙 ······139
<그림2-27>	벤츠의 SLS AMG E-CELL ·········141
<그림2-28>	blue-e-motion 이미지 및 스펙143
<그림2-29>	e-LAVIDA 이미지 및 스펙 ······ 144
<그림2-30>	제타(jetta) 이미지 ······ 145
<그림2-31>	eT! 컨셉카 ····· 145
<그림2-32>	닐 이미지······146
<그림2-33>	A1 e-Tron 이미지 및 스펙 ······ 149
<그림2-34>	아우디 A3 e-tron ······ 150
<그림2-35>	아우디 어반 컨셉트(Urban Concept) ······ 152
<그림2-36>	아우디 A2 컨셉트 ······153
<그림2-37>	플루언스 Z.E. 이미지 및 스펙156
<그림2-38>	캉구 익스프레스 Z.E. 이미지 및 스펙157
<그림2-39>	ZOE Z.E. 이미지 및 스펙 ·······159
<그림2-40>	트위지 Z.E. 이미지 및 스펙160
<그림2-41>	드지르(Dezir) 콘셉트카 이미지 및 스펙161
<그림2-42>	C30 DRIVE ELECTRIC 이미지 및 스펙 ······· 166
	Rolls-Royce 102EX 이미지 및 스펙 ······ 169
<그림2-44>	Smart Forspeed 콘셉카 및 스펙 ···········172
<그림2-45>	인디카 비스타 EV 이미지174

<그림2-46> 나도 EV 이미시 및 스펙	···· 175
Ⅲ. 하이브리드자동차(hev, phev) 개발동향	··· 183
<그림3-1> Different Hybrid Vehicle Drivetrain topologies	183
<그림3-2> 하이브리드 자동차 시스템 구성	
<그림3-3> 하이브리드 자동차 주행모드	
<그림3-4> 하이브리드 자동차 작동방법	185
<그림3-5> 하이브리드 작동방식	
<그림3-6> 하이브리드 자동차의 기술주기상 위치	188
<그림3-7> 2011년 리튬-이온 배터리 시장 전망	189
<그림3-8> 전기모터 이미지	190
<그림3-9> 인버터 이미지	190
<그림3-10> 플러그인 하이브리드-프리우스 이미지와 스펙	192
<그림3-11> 프리우스 PHV의 리튬이온전지와 푸리우스 니켈 수소 전지·	193
<그림3-12> 프리우스 PHV시스템	193
<그림3-13> 프리우스 PHV(왼쪽) 기존 프리우스(오른쪽) ······	
<그림3-14> 모니터 화면에 플러그인 충전 표시)와 EV 주행가능 거리 표	시 194
<그림3-15> 네비게이션 PLUG-IN 효과 화면	195
<그림3-16> 프리우스 플러그 인 하이브리드 주요 구성요소	····· 196
<그림3-17> 프리우스 플러그 인 하이브리드 구동용 배터리의 구성	197
<그림3-18> SPORT모드(왼쪽), ECO모드 시 미터 패널	198
<그림3-19> SPORT, NORMAL, ECO모드 시 변화	199
<그림3-20> 렉서스 CT200h 내부 ·····	199
<그림3-21> Lexus CT200h 이미지 및 스펙 ······	···· 200
<그림3-22> 렉서스 CT200h 이미지 및 비교 사이즈	201
<그림3-23> 렉서스 CT200h의 맥퍼슨 스트럿식 서스펜션 및 토션빔	202
<그림3-24> 렉서스 CT200h 앞쪽/뒤쪽/좌우를 연결하는 퍼포먼스댐퍼 탑	재 202
<그림3-25> 도요타의 아쿠아	203
<그림3-26> 엔진, CVT. 중간 동선이 보이는 부분이 전기 모터	205
<그림3-27> 엔진이 못 미치는 저속 토크를 전기 모터의 파워로 대폭 개설	선 · 205
<그림3-28> Honda CR-Z 엔진룸(좌측이 1.5L 엔진) ······	206
<그림3-29> 6 MT 차 Motor Assist 및 CVT 차량의 변속비 제어 이미지	206
<그림3-30> Honda CR-Z 저단 와이드	207
<그림3-31> 파워 유니트는 1.3L 가솔린 엔진과 IMA 시스템의 조합,	
트랜스 미션은 CVT	···· 209

<그림3-32> 인사이트 ECO 어시스트 시스템 구성도, 209
<그림3-33> 디지털 속도계
<그림3-34> 미터 패널의 다중 정보 디스플레이. 드라이버 에코 운전도를
리프의 수로 표시210
<그림3-35> 4도어 세단 시빅 이미지210
<그림3-36> civic concept와 북미 civic 4도어 세단의 2011년 모델(오른쪽)·211
<그림3-37> SUBARU Hybride Tourer Concept 이미지212
<그림3-38> Buick Regal eAssist 이미지216
<그림3-39> BMW 비전 이피션트 다이내믹스 이미지219
<그림3-40> 하이브리드 시스템 작동 상황221
<그림3-41> Audi A8 hybrid technical data ······· 224
<그림3-42> 현대 쏘나타 하이브리드 이미지233
<그림3-43> K5 하이브리드 이미지 및 스펙235
<그림3-44> 알페온 e어시스트 이미지236
IV. xEV 관련 기술개발 테마239
<그림4-1> plug in Hybrid의 개념 ·······239
<그림4-2> 배터리 및 전기동력 강화에 따른 내연기관 출력 및 작동
특성의 변화 요구240
<그림4-3> 본 연구의 PHEV용 엔진의 작동 방식과 선정241
<그림4-4> 2008년 제시 R&D 집중 투자 분야242
<그림4-5> 기술로드맵
<그림4-6> 열전도성 복합체에 의한 Thermal runaway 방지 모델 259
<그림4-7> 미쓰비시 자동차 EV의 layout ············260
<그림4-8> Nissan EV의 layout ···········261
<그림4-9> 각사의 EV용 배터리 모듈
<그림4-10> 차량 구동시스템별 구성
<그림4-11> 차량 구동시스템별 에너지원 사용 정도 270
<그림4-12> PHEV 기능별 분류 ······ 270
<그림4-13> PHEV의 AER과 최대 출력에 따른 구분 ······ 271
<그림4-14> PHEV 종류별 정의 및 엔진 On/Off 거동 ··································
<그림4-15> PHEV의 성능 측면 상품성273
<그림4-15> PHEV의 성능 측면 상품성 273 <그림4-16> PHEV의 EV 측면 상품성 273
<그림4-15> PHEV의 성능 측면 상품성273

<그림4-19>	AER 연장형 PHEV용 하이브리드 구동시스템 구조2	76
<그림4-20>	AER 연장형 PHEV, PHEV용 하이브리드 구동시스템 구조별	
	비교2	77
<그림4-21>	개발 시스템의 개념도 : 구동계, 배터리 패키지, 차량 2	92
<그림4-22>	모터 구동시스템 비교(기존 시스템 vs 개발안) ······ 2	93
<그림4-23>	1일 1충전을 위해 배터리 소요 용량 검토2	93
<그림4-24>	서울시의 배터리 교환식 전기버스 도입계획2	94
<그림4-25>	배터리 교환 개념 2	95
<그림4-26>	최종 차량 개념 : 일체형 모터 구동시스템 + 배터리 교환기술	
	적용2	95
<그림4-27>	개발시스템의 제동 및 현가 시스템2	96
<그림4-28>	저상 전기버스의 승객 편의성2	96
<그림4-29>	배터리 교환식 전기버스 운용체계도2	97
<그림4-30>	저상 액슬 일체형 모터 구동시스템 개념도3	01
<그림4-31>	휠 모터 개념도	02
<그림4-32>	교환형 배터리 시스템 개념	02
<그림4-33>	구동시스템-차량 구성개념3	03
<그림4-34>	시험 차량 외관개념 (현대자동차 저상버스)3	03
<그림4-35>	시험 평가 기술 개발	04
<그림4-36>	전기차 전기구동 시스템상의 인버터 및 전력모듈의 구성도 3	47
<그림4-37>	Hybrid차 전기구동 시스템상의 전력변환장치 및 전력모듈의	
	구성도3	47
<그림4-38>	개발 대상 품목 개요도3	48
<그림4-39>	그린카용 고효율 전기동력 시스템 공동부품 개발 로드맵 3	49
<그림4-40>	전기자동차의 냉각시스템 개략도(예시)3.	58
<그림4-41>	전기자동차용 전장부품 및 배터리 냉각시스템 구조3.	59
<그림4-42>	무공해 자동차용 고효율 열방출 및 열공급 기술 개요3	60
<그림4-43>	Point-to-Point 전기차 공동이용(예시)	76
<그림4-44>	한국형 충전인프라 모델3.	80
<그림4-45>	전국 유형별 주거 형태	81
V. 전기차-	용 이차전지와 충전기술 동향 38	37
<그림5-1> .	고효율 이차전지 응용분야3	88
<그림5-2>	경쟁국별 이차전지 기술수준 비교 (일본=100) ·······3	91
< 기립5-3> :	정지시장 환산 전망 ···································	91

<그림5-4> 이차전지 시장 전망
<그림5-5> 전기자동차 보급 및 이차전지 시장 전망
<그림5-6> LG화학 2차전지 생산 능력 추이
<그림5-7> AESC 투자비율 ····································
<그림5-8> 저온소성 탄소 음극재료 핵심 기술 421
<그림5-9> 차세대 자동차용 리튬이차전지 초극세섬유 복합체 분리막기술 · 423
<그림5-10> 리튬이차전지에서의 분리막의 역할 423
<그림5-11> 분리막 시장 규모 및 성장률 전망 427
<그림5-12> 업체별 시장 점유율
<그림5-13> 중대형 급속충전 이차전지용 고기능성 나노소재 기술 429
<그림5-14> 산업기술융합/나노융합에너지환경/나노융합이차전지 430
<그림5-15> 이차전지 기술개발 로드맵
Ⅵ. 부록[참고자료]505
<그림6-1> 라벨 디자인 예시(안)