목차

I. 주목받는 3D 프린팅 시장의 현재와 미래 ········27
1. 이슈로 등장한 3D 프린팅 시장과 기술동향 ·······27
1-1. 3D 프린팅에 주목하는 세계 ······27
1) 제조업의 패러다임의 변화
(1) 다양한 산업 분야에서 혁신 27
(2) 소비와 제조의 결합30
(3) 맞춤형 주문 생산과 원격 유통31
2) 소비의 변화32
(1) 다양한 상품의 출현32
(2) 소비자 커뮤니티의 변화
1-2. 개발 History ······ 35
1) 유래35
2) 개발연혁
1-3. 최근 개발 사례39
2. 3D 프린팅 개념, 작동원리, 방식별 분류 ·······43
2-1. 개념과 구조
1) 개념
2) 구조44
3) 작동원리와 작동 프로세스48
2-2. 3D 프린팅 작동 방식별 분류50

1) 융합수지 압출 적층 조형 - FFF(Fused Filament Fabrication)50
2) 마스크 투영 이미지 경화 조형 - DLP(Digital Light Processing) ······· 53
3) 분말 및 잉크젯 투사 조형 - PBP (Powder Bed & inkjet head 3d Printing) 55
4) 폴리젯 적층 조형 Polyjet (Photopolymer Jetting Technology) 56
5) 멀티 젯 조형 - MJM(Multi Jet Modeling) ······· 58
6) 레이저 금속 성형 기술(Laser Additive Manufacturing) ······ 59
(1) DMT(Laser-aided Direct Metal Tooling) 기술 ······60
7) 개체 접합 조형 - LOM (Laminated Object Manufacturing) ······· 64
8) 선형 분사 방식65
9) 작동 방식별 성능과 제작 사이즈66
3. 3D 프린팅 육성에 나선 주요국 정책동향과 성과 ······69
3-1. 미국
1) 시장 동향과 전망69
2) 3D 프린팅 관련 정책 동향 ······70
3-2. 중국74
1) 시장동향과 전망74
2) 정책 동향75
3-3. 일본 ······77
1) 시장동향과 전망77
2) 정책 동향
3-4. EU
1) 영국
2) 네덜란드
3) 독일91
3-5. 한국95
1) 시장동향 및 전망95
2) 정책 동향
(1) 3D프린팅산업 발전전략 포럼 ·····99
4. 3D 프린팅 시장실태와 전망 및 대응전략 ·······102
4-1. 시장동향 및 전망
1) 시장규모 및 동향102

(1) 적용 산업분야 및 사용용도102
(2) 국가별 점유율103
(3) 산업용/개인용 업체 점유율
(4) 장비 / 재료 가격 동향
2) 향후 전망107
(1) 시장규모 전망107
(2) 개인용 3D 프린터 보급 확대 ···································
(3) 활용분야 확대
3) 4D 프린팅 기술 출현114
4-2. 향후 해결해야 할 과제
1) 기술 측면120
2) 사회문화·법률 측면 ···································
4-3. 사업기회와 대응전략
1) 요소기술 개발
2) 소재와 재료 개발
3) 가격 절감
4) 다양한 비즈니스 모델 개발
5) 제도와 규제 정비
Ⅱ. 확대되는 3D 프린팅 활용과 기술개발 사례, 상용화전략129
1. 3D 프린팅 관련 주요 기술개발 동향과 특허동향 ····································
1-1. 3D프린팅의 제작 공정의 기술동향 ·······129
1) 기술 원리
(1) 모델링
(2) 프린팅130
(3) 마
2) 첨삭방식131
(1) 압출 적층132
(2) 분말 재료 결합133
(3) 라미네이션 134
(4) 광중합135
3) 제품 개발 동향136

(1) 개인용 3D프린터	136
(2) 상업용/가정용 프린터	137
1-2. 3D 프린터의 하드웨어와 소프트웨어 기술동향 ·····	138
1) 하드웨어 분야	138
(1) 본체	138
(2) 전자 부품	141
(3) 익스트루더(Extruder) ·····	145
2) 소프트웨어	147
(1) CAD	147
(2) CAM	151
(3) 펌웨어(Firmware) ·····	153
1-3. 3D프린터용 재료의 기술/시장 동향과 개발 사례 ······	155
1) 재료 분야별 기술/시장 동향	155
(1) 플라스틱계	155
(2) 금속계	157
(3) 파우더	160
(4) 왁스	160
(5) 고무	160
(6) 나무	161
(7) 종이	163
(8) 모래	163
(9) 유리	163
(10) 세라믹(Ceramics) ·····	163
(11) 나일론	165
2) 재료 관련 기술개발 이슈	165
(1) 다중 소재 프린팅	165
(2) 세라믹스 3D 프린팅	166
(3) 고강도 3D 프린팅 소재 - '티글라스' ·····	168
(4) 겔 재료의 3D 프린터 개발 ·····	169
(5) 액체 금속을 이용한 3D 프린팅 기술 개발 ·····	170
(6) 태양열을 이용해 모래를 녹여 3D 프린트하기 ·····	171
(7) 폐품 플라스틱 재활용	172

1-4. 주요 특허 동향	173
1) 이슈퀘스트 분석	173
(1) 출원년도	173
(2) IPC(국제 특허 분류) ·····	174
(3) 출원인별	176
2) 특허청 분석	176
3) 주요 업체별 보유 특허	181
(1) Stratasys Incorporated ·····	181
(2) 3D시스템즈 ·····	192
(3) Z corporation ·····	204
(4) 캐리마	206
(5) 인스텍	······ 210
2. 국내 '3D프린팅' 관련 주요 연구개발 동향과 연구테마	······ 213
2-1. 스마트폰용 300dpi급 해상도를 갖는 무안경식 3D 프린터 엔진 기	바발·213
1) 연구과제 정보	······ 213
2) 연구 목표 및 기대효과	······ 213
3) 연구 내용	······ 214
2-2. 영상 햅틱 융합 제어 기반의 다중 분사체 바이오 프린팅 시스템 개발	······ 214
1) 연구과제 정보	······ 214
2) 연구 목표	······ 215
3) 연구 내용	······ 215
4) 기대효과	······ 215
2-3. 3D프린팅장비(RP)을 활용한 산업제품 연구개발	······ 216
1) 연구과제 정보	······ 216
2) 연구 목표	······ 217
3) 연구 내용	······ 217
4) 기대효과	······ 218
2-4. 나노스케일 3차원 프린팅 시스템	······ 218
1) 연구과제 정보	······ 218
2) 연구 목표	······ 219
3) 연구 내용	219

2-5. 생체 조직 재생을 위한 쾌속조형 기반 3차원 세포 프린팅 기술 개발 220
1) 연구과제 정보 220
2) 연구 목표 220
3) 연구 내용 221
4) 기대효과
2-6. 디지탈 생산방식을 이용한 의료기기제품 개발 222
1) 연구과제 정보 222
2) 연구 목표 222
3) 연구 내용 223
4) 기대효과
2-7. Rapid Prototyping 응용 디자인 조명 개발 224
1) 연구과제 정보 224
2) 연구 목표 224
3) 연구 내용 225
4) 기대효과
2-8. 3D 분석 및 프린팅 시스템을 이용한 인간공학적 몰드 브라 설계기술 ····· 226
1) 연구과제 정보 226
2) 연구 목표
3) 연구 내용
4) 기대효과
2-9. 3차원 프린팅 기반의 디지털 설계 및 제조 환경 구축을 위한 융합 데이
터 처리 및 모델링 원천기술 개발 228
1) 연구과제 정보 228
1) 연구과제 정보 228 2) 연구 내용 228
2) 연구 내용
2) 연구 내용 228 2-10. 쾌속조형 공법을 이용한 품질향상 230
2) 연구 내용2282-10. 쾌속조형 공법을 이용한 품질향상2301) 연구과제 정보230
2) 연구 내용2282-10. 쾌속조형 공법을 이용한 품질향상2301) 연구과제 정보2302) 연구 목표230
2) 연구 내용2282-10. 쾌속조형 공법을 이용한 품질향상2301) 연구과제 정보2302) 연구 목표2303) 연구 내용231
2) 연구 내용2282-10. 쾌속조형 공법을 이용한 품질향상2301) 연구과제 정보2302) 연구 목표2303) 연구 내용2314) 기대효과231
2) 연구 내용2282-10. 쾌속조형 공법을 이용한 품질향상2301) 연구과제 정보2302) 연구 목표2303) 연구 내용2314) 기대효과2312-11. 쾌속 정밀주조 및 정밀 mock-up의 품질 개선232

4) 기대효과
2-12. CAD 설계 및 쾌속조형(Rapid Prototyping : RP)기술을 활용한 귀금속
제품용 연결장식 부품 및 가변성 적용 완제품 개발234
1) 연구과제 정보
2) 연구 목표234
3) 연구 내용235
4) 기대효과236
3. 주요 산업별 적용사례와 개발동향 및 상용화전략237
3-1. 제조업
1) GM / 포드 (자동차산업) 3D 프린팅 활용 ·······237
2) 현대 모비스 - 기아 스펙트라 대쉬보드 제작 239
3) 코닉세그 - 신차 개발 공정에 적용 240
4) 3D 전기자동차 '얼비2'······241
5) 신일경사(日) - 부품 테스트를 위한 프로토타입 제작 242
6) 3D프린터로 배터리 제작 ······ 244
7) Nestle 커피메이커 부품의 기능성 및 조립성 테스트에 적합한 시제품 245
8) 진공청소기 조립 Fixture ·······246
9) loxus社, 3D프린터로 기술혁신 파워 업 247
10) 드림박스(Dreambox), 최초의 3D 프린트 자동판매기 248
3-2. 의료·피트니스 분야 ···································
1) 신체용 디바이스 제작250
2) 피부 조직 재생251
3) 인간 간 조직 재현252
4) 관절 이식 수술에 활용 254
5) 인공 귀 제작
6) 보청기 제작
7) 의료 · 개호 침대 개발 ···································
8) 휠체어 개발에 적용259
9) 오리 신체 복원
10) 500년 전의 얼굴 복원
3-3. 교육 분야264
1) 메이커 스페이스(Maker Space) ······· 264
2) 일본공업대학(기계공학과)264

3)	서울대학교(혁신설계 및 통합생산 연구실)	265
4)	중앙대학교(기계공학과)	266
3-4.	항공・우주 분야	269
1)	티타늄 전투기 부품	269
2)	Bell Helicopter	270
3)	드론 잇 유어 셀프	271
4)	우주선 비행용 시트	272
3-5.	건축 분야	274
1)	2층 건물 실축	274
2)	디지털 그로테스크(Digital Grotesque) ·····	275
3)	주의사당 캠퍼스 모형제작	276
3-6.	로봇 분야	278
1)	스마트폰으로 제어 가능한 스마트 로봇 인형	278
2)	마키(MAKI) ·····	279
3)	트랜스포머 로봇	280
4)	3D 프린터 Dimension '로보컵' ······	281
5)	Dimension 3D 프린터로 만들어진 "외골격" ·····	282
3-7.	개인맞춤형 분야	284
1)	내 얼굴을 '프린트'해 만드는 인형	284
2)	3D 스캔을 이용해 킨더 서프라이즈 에그 내용물 알아 맞추기	285
3)	태아의 모습 카피	286
4)	진공청소 터빈	286
5)	스태이셜 마우스	287
6)	Eyelet - 팔찌로 착용할 수 있는 선글라스	288
7)	디멘젼, 3D프린터-싸이클러를 위한 아이폰 받침대 제작한 Pedal Brain社 ·	289
8)	Enventys社 - Gyro Bowl ······	290
3-8.	패션·의류 분야	292
1)	축구화 2	292
2)	하이힐	293
3)	드레스	294
4)	아이폰 메쉬업 슈즈	295
5)	N12 비키니(bikini)	295

3-9. 예술·박·	물관 분야	297
1) 디지털 도	근형제작 전시 ······	297
2) 고대 유물	물 카피	298
3) 공룡 복제	स	299
4) 기타		299
3-10.	ood)	301
1) 푸드 프린	- 	301
2) 식품으로	. 가공할 수 있는 3D 프린터 시스템 개발…	302
m 국내외 3D	프린팅 사업참여 Key 플레이어 사업	저랻307
m. 11111 0D	— e o ria i ricy e si ri ria	£-1 001
1. 국내 Key 플	레이어 개발동향과 사업전략	307
	조 업체	
1) 캐리마(C	CARIMA) ·····	307
2) 로킷(ROI	KIT)	309
	NSSTEK) ·····	
4) 오픈크리	에이터(Opencreator) ·····	317
5) 윌리봇(W	VILLYBOT) ·····	322
	A-team) ·····	
7) 솔리시스	(SOLISYS) ·····	328
1-2. 유통・솔	루션 업체	329
2) 시스옵엔	지니어링	332
3) 세중정보	기술	336
4) 씨이피테	크(CEPTECH) ·····	337
5) 한국아카	이 브	339
6) (주)브룰	레코리아	339
1-3. 재료 관련	변 업체	342
1) (주)SH에	너지화학	342
2) 엔피케이		343
3) 코프라 …		343
1-4. 관련 기술	<u></u> 보유 업체	345
1) TPC		

2)	로보스타	346
3)	맥스로텍	347
2.	해외 Key 플레이어 개발동향과 사업전략	348
	1) Stratasys ·····	348
	2) 3D Systems ·····	352
	3) Objet	358
	4) Z Corporation ·····	360
	5) EOS	362
	6) MakerBot ·····	364
	7) RepRap	370
	8) Shapeways ·····	379
	9) botObjects ·····	381
	10) Solid scape ·····	384
	11) Fab@Home ····	390
	12) Mebotics ·····	392
	13) Ultimaker ·····	395
	14) Asiga ·····	398
	15) Afinia ·····	399
	16) MakerGear	400
	17) Solidoodle ·····	402
	18) Printbot ·····	403
	19) Type A Machines	404
	20) Dawson Distributions	406
	21) Bits From Bytes	407
	22) Deezmaker ·····	409
	23) WobbleWorks	410
	24) Japica ·····	413
	25) MIT	414
	26) CMET주식회사 ·····	419
	27) ASPECT	421

Ⅳ. 개인(가정)용 / 산업용 3D프린터 제품 포트폴리오 분석 ··········· 427

1.	개인용 3D프린터 분야 ·····	427
	1-1. 가격	427
	1-2. 제품 국적	
	1-3. 출력 가능 색상	429
	1-4. 사용 가능 재료	430
	1-5. 기술 방식	432
	1-6. 인쇄 사이즈	432
	1) Width ·····	432
	2) Depth	434
	3) Height ·····	435
	1-7. 인쇄 레이어 두께	436
	1-8. 출력 속도	437
	1-9. 노즐 직경	438
	1-10. 위치 정밀도	439
	1-11. 본체 사이즈	441
	1) Width	
	2) Depth	
	3) Height ·····	443
	1-12. 본체 중량	
	1-14. ASSEMBLED / DIY ·····	445
2.	산업용 3D프린터 분야	
	2-1. 가격	447
	2-2. 제품 국적	
	2-3. 출력 가능 색상	
	2-4. 기술 방식	450
	2-5. 인쇄 사이즈	
	1) Width	451
	2) Depth	
	3) Height ·····	453
	2-6. 인쇄 레이어 두께	454

2-7.	속도 ····································
2-8.	본체 사이즈
1)	Width
2)	Depth
3)	Height
2-9.	본체 중량460

표목차

I. 주목받는 3D 프린팅 시장의 현재와 미래 ·····	··· 27
<표 I -1> 3D 프린터에 대한 주요 기관/미디어의 평가 ·····	···· 28
<표 I -2> 3D프린팅의 연혁	38
<표 I -3> 3D 프린터 작동 방식별 성능 ·····	66
<표I-4> 중국 주요 3D 프린터 기업 및 제품 ·····	
<표 I -5> 일본 경제산업성 3D 프린터 개발 역할분담 계획 ······	···· 81
<표 I -6> EOS GmbH의 주요 내용	···· 93
<표 I -7> Stratasys와 3D Systems의 현황 비교 ·····	
<표 I -8> 개인용 3D 프린터 및 재료물질 가격 ·····	
<표 I -9> 산업용 3D 프린터 및 재료물질 가격 ·····	··· 107
Ⅱ. 확대되는 3D 프린팅 활용과 기술개발 사례, 상용화전략	· 129
<∄∏-1> Blender ·····	··· 148
<張Ⅱ-1> Blender ····································	··· 148 ··· 149
<∄∏-1> Blender ·····	··· 148 ··· 149
<張Ⅱ-1> Blender ····································	148 149 168
<표 II -1> Blender ····································	··· 148 ··· 149 ··· 168 ··· 175
<표Ⅱ-1> Blender	··· 148 ··· 149 ··· 168 ··· 175
<표Ⅱ-1> Blender	··· 148 ··· 149 ··· 168 ··· 175 ··· 177
<표Ⅱ-1> Blender <표Ⅱ-2> Art of Illusion <표Ⅱ-3> ADMAFLEX의 스펙 <표Ⅱ-4> 국제특허분류(IPC) <표Ⅱ-5> 3D 프린트 기술에 관한 국내 특허출원 사례(~2013 공개)·········	·· 148 ··· 149 ··· 168 ··· 175 ·· 177
< 표Ⅱ-1> Blender <표Ⅱ-2> Art of Illusion <표Ⅱ-3> ADMAFLEX의 스펙 <표Ⅱ-4> 국제특허분류(IPC) <표Ⅱ-5> 3D 프린트 기술에 관한 국내 특허출원 사례(~2013 공개) Ш. 국내외 3D 프린팅 사업참여 Key 플레이어 사업전략 <표Ⅲ-1> 이지 스캔(EASYSKAN)' 주요 스펙 <표Ⅲ-2> NP멘델 스펙	··· 148 ··· 149 ··· 168 ··· 175 ·· 177 · 307 ·· 313 ··· 320
<표Ⅱ-1> Blender <표Ⅱ-2> Art of Illusion <표Ⅱ-3> ADMAFLEX의 스펙 <표Ⅱ-4> 국제특허분류(IPC) <표Ⅱ-5> 3D 프린트 기술에 관한 국내 특허출원 사례(~2013 공개) Ш. 국내외 3D 프린팅 사업참여 Key 플레이어 사업전략 <표Ⅲ-1> 이지 스캔(EASYSKAN)' 주요 스펙	··· 148 ··· 149 ··· 168 ··· 175 ·· 177 · 307 ·· 313 ··· 320

<표Ⅲ-4> Objet24, Objet30/30 Pro 주요 사양 ···································
<표Ⅲ-5> Eden 제품별 주요 사양 ···································
<표Ⅲ-6> Connex 제품군 주요 사양 ···································
<표Ⅲ-7> Printrbot Jr. / Printrbot LC V2 / Printrbot Plus V2 주요 스펙·341
< 笠Ⅲ-8> Replicator™
<표III-9> ReplicatorTM 2의 스펙
<표Ⅲ-10> ReplicatorTM 2X의 스펙 ···································
<표Ⅲ-11> '프로데스크3D'(ProDesk3D) 의 스펙 ·························382
<표Ⅲ-12> 3Z Lab 스펙 ···································
<표Ⅲ-13> 3Z Studio 스펙 ····················387
<표Ⅲ-14> 3Z Pro 스펙 ···································
<표Ⅲ-15> 3Z WAX 스펙 ·························389
<표Ⅲ-16> NRM-6000의 주요 스펙 ···································
<표Ⅲ-17> SEMplice용 분말 재료 ···································

그림목차

I. 주목받는 3D 프린팅 시장의 현재와 미래27
<그림 I -1> 3D프린팅이 바꾸는 제조업27
<그림 I -2> 3D 프린터로 제작된 축구화(밑창) ·······32
<그림 I -3> 13:30 Headphones
<그림 I -4> NASA의 로켓엔진 부품39
<그림 I -5> 포드자동차 - 3D 프린팅로 엔진 블록 코어 제작40
<그림 I -6> 3D프린팅 순서도 및 인쇄 개념도44
<그림 I -7> 3D 프린터 구조 ·························45
<그림 I -8> 3D 프린팅 작동원리 ·············48
<그림 I -9> FDM의 기술 원리 ······51
<그림 I -10> 마스크 투영 이미지 경화 조형의 기술 원리 ······53
<그림 I -11> 폴리젯 적층 조형의 기술 원리 ······56
<그림 I -12> 멀티 젯 조형의 기술 원리 ······58
<그림 I -13> 레이저 금속 성형 기술의 원리 ······59
<그림 I -14> 3차원 3D CAD 형상 ·······60
<그림 I -15> DMT공정
<그림 I -16> DMT를 이용한 냉각수로 금형62
<그림 I -17> 개체 접합 조형의 기술 원리 ······64
<그림 I -18> 매테리얼 3D 프린터66
<그림 I -19> 향후 5년간 3D 프린터 예상 매출액 추이70
<그림 I -20> Abee가 발표한 저가형 3D 프린터기'SCOOVO C170' ······ 77
<그림 I -21> 일본 3D 프린터 카페'FAB Cafe' ······· 78
<그림 I -22> 일본 3D 프린터 시장규모 추이와 예측79

<그림 I -23>	3D 프린터에 대한 기업(제조업)의 관심동향 ······80
<그림 I -24>	모래형 3D 프린터 개발 프로젝트 참여기업 82
<그림 I -25>	3D 인쇄 제작된 자전거 'Airbike'
<그림 I -26>	벨레만 K8200 3D ····· 87
<그림 I -27>	Leapfrog社의 "Creatr", "Xeed"
<그림 I -28>	스트라타시스의 Objet Connex 3D 프린터로 제작된 망토> 91
<그림 I -29>	3D 프린터로 제작한 시제품 견본 ·····92
<그림 I -30>	3D 프린터를 활용해 개발에 성공한 인공혈관94
<그림 I -31>	캐리마社의 3D 프린터'마스터' ····· 96
<그림 I -32>	로킷社 3D 프린터 '에디슨' 97
<그림 I -33>	Industrial Area of Additive Manufacturing 102
<그림 I -34>	Applications of Additive Manufacturing Systems 103
<그림 I -35>	Cumulative Industrial AM Systems installed by country 103
<그림 I -36>	산업용 3D 프린터 시장의 상위 업체 점유율104
<그림 I -37>	개인용 3D 프린터 시장의 상위 업체 점유율105
<그림 I -38>	3D 프린터 평균가격 추이106
<그림 I -39>	3D 프린터 용도별 가격 추이 ···································
<그림 I -40>	세계 3D 프린터 시장규모 전망107
<그림 I -41>	일본 아비(Abee)社의 3D 프린터 109
<그림 I -42>	중국 롱위앤 AFS가 판매하는 1000 달러 3D 프린터109
<그림 I -43>	산업 분야별 적용 현황112
<그림 I -44>	4D의 개념 ···································
<그림 I -45>	나노 스케일의 자가 조립 혁명(Self-Assembly Revolution) … 115
<그림 I -46>	끈을 만드는 프로그램116
<그림 I -47>	특수 3D프린터로 끈의 소재들을 인쇄 중116
<그림 I -48>	한줄의 끈에서 'MIT' 글자로 변화116
<그림 I -49>	선이 물속에서 다른 형태로 변형116
<그림 I -50>	3차원 자율성 물질의 자가 조립(self assembly) 실험 모습 117
<그림 I -51>	4D의 기술의 핵심 요소118
<그림 I -52>	4D 프린팅을 이용한 적응적 인프라의 예 ······119
<그림 I -53>	3D프린터 재료 ·······124
Ⅱ. 확대되는	: 3D 프린팅 활용과 기술개발 사례, 상용화전략 ·········129
<그림Ⅱ-1>	3D model slicing

<그림Ⅱ-2> 용융 접착 방식133
<그림Ⅱ-3> 블루 페인터 테이프 / 캡톤 테이프141
<그림Ⅱ-4> 아두이노 마이크로컨트롤러142
<그림Ⅱ-5> 렙랩(RepRap)의 스테퍼 모터(Stepper Motors) ········142
<그림Ⅱ-6> RepRap의 스테퍼 드라이버(Stepper Drivers)143
<그림Ⅱ-7> PCB Heatbed MK1 ············144
<그림Ⅱ-8> 보우덴 익스트루더(Bowden Extruders)145
<그림 Π -9> 웨이드의 기어 익스트루더 / 그렉의 힌지 익스트루더 146
<그림 II-10> J-head / Budaschnozzle(v1.3) ···············147
<그림Ⅱ-11> Elements of mesh modeling ············148
<그림Ⅱ-12> Parametric file format ········150
<그림Ⅱ-13> Parametric file format ·······151
<그림Ⅱ-14> STL mesh format151
<그림Ⅱ-15> 선택적 레이저 소결(SLS) 방식 ·······158
<그림Ⅱ-16> Laywood ······162
<그림Ⅱ-17> Laywood를 사용한 출력물 ·······162
<그림Ⅱ-18> 세라믹 (Ceramics) 소재 출력물 ··························164
<그림Ⅱ-19> 3D 프린터로 생산된 제품시장 규모 전망 ···································
<그림Ⅱ-20> 세라팹 7500 ·······167
<그림Ⅱ-21> ADMAFLEX로 인쇄한 세라믹스 샘플 ······· 167
<그림Ⅱ-22> 정맥 인공밸브 제작과정170
<그림Ⅱ-23> 연도별 3D 프린터 관련 출원 동향 ·······173
<그림Ⅱ-24> IPC별 3D 프린터 관련 출원 동향 ········174
<그림Ⅱ-25> 출원인별 3D 프린터 관련 출원 동향 ···································
<그림Ⅱ-26> 3D 프린트 기술에 관한 주요국 특허출원 건수 ······177
<그림Ⅱ-27> 내외국인 출원비율(~2013 공개)178
<그림Ⅱ-28> 출원인 국적별 출원건수(~2013 공개)178
<그림 Π -29> 두개골 성형술에 적용되는 맞춤형 두개골 임플란트의 제작과정 \cdots 179
<그림Ⅱ-30> 3D 프린터를 사용한 다양한 형태의 약물 전달체 제조방법 및 제
조된 다양한 모양의 약물 전달체 (2011.9.15. 출원)180
<그림 Π -31> 멀티 프로젝션을 이용한 고해상도 치아 모델 제작용 3D 프린터 ············· 180
<그림Ⅱ-32> 자동차 개발 시 RP(rapid prototype)의 적용 예 ······ 240
<그림Ⅱ-33> 하버드대의 3D프린터로 제작된 핀헤드 배터리 ··············· 244
<그림Ⅱ-34> 드림박스를 이용하는 프로세스248

<그림Ⅱ-35> 스킨 프린트 과정252
<그림Ⅱ-36> 일본 외과 전문의 스기모토 마키가 아크릴 수지로 만든 성인 환
자의 간 3D 모형254
<그림Ⅱ-37> '딜라이트 보청기'257
<그림Ⅱ-38> 3D 프린터로 출력한 오리 의족 ·······261
<그림Ⅱ-39> 연구실에 설치된 Dimension SST 768266
<그림Ⅱ-40> 드론 잇 유어 셀프271
<그림Ⅱ-41> 텐진대학의 우주선 비행용 시트272
<그림Ⅱ-42> 디지털 그로테스크(Digital Grotesque)275
<그림Ⅱ-43> 로봇- MAKI ···········280
<그림Ⅱ-44> 3D 프린터를 이용한 의료용 로봇 팔의 설계와 제작, 착용 모습 ····· 283
<그림Ⅱ-45> 결혼식을 위해 꾸민 모습을 3D프린터로 '프린트'해 만든 인형 284
<그림Ⅱ-46> 천사의 형상(Shape od an Angel) ············286
<그림 II -47> 아일렛(Eyelet) ······· 288
<그림 Π -48> 3D 프린팅 방식으로 바닥면을 제조한 나이키의 진공 레이저 탈론 \cdots 292
Ⅲ. 국내외 3D 프린팅 사업참여 Key 플레이어 사업전략307
<그림Ⅲ-1> 캐리마의 Master Plus ····································
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP덴델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP덴델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328 <그림Ⅲ-9> SRP-V 328
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328 <그림Ⅲ-9> SRP-V 328 <그림Ⅲ-10> Stratasys의 Fortus 라인업 329
<그림Ⅲ-1> 캐리마의 Master Plus307<그림Ⅲ-2> MX-3315<그림Ⅲ-3> 3차원 3D CAD 형상316<그림Ⅲ-4> DMT공정317<그림Ⅲ-5> NP멘델319<그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot324<그림Ⅲ-7> 스프린터(Sprinter)326<그림Ⅲ-8> SRP-1024328<그림Ⅲ-9> SRP-V328<그림Ⅲ-10> Stratasys의 Fortus 라인업329<그림Ⅲ-11> Fortus360mc330<그림Ⅲ-12> Stratasys의 Dimension 라인업330<그림Ⅲ-13> DimensionSST 1200 es330
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328 <그림Ⅲ-9> SRP-V 328 <그림Ⅲ-10> Stratasys의 Fortus 라인업 329 <그림Ⅲ-11> Fortus360mc 330 <그림Ⅲ-12> Stratasys의 Dimension 라인업 330 <그림Ⅲ-13> DimensionSST 1200 es 330 <그림Ⅲ-14> uPrint SE 331
<그림Ⅲ-1> 캐리마의 Master Plus307<그림Ⅲ-2> MX-3315<그림Ⅲ-3> 3차원 3D CAD 형상316<그림Ⅲ-4> DMT공정317<그림Ⅲ-5> NP멘델319<그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot324<그림Ⅲ-7> 스프린터(Sprinter)326<그림Ⅲ-8> SRP-1024328<그림Ⅲ-9> SRP-V328<그림Ⅲ-10> Stratasys의 Fortus 라인업329<그림Ⅲ-11> Fortus360mc330<그림Ⅲ-12> Stratasys의 Dimension 라인업330<그림Ⅲ-13> DimensionSST 1200 es330
<그림Ⅲ-1> 캐리마의 Master Plus 307 <그림Ⅲ-2> MX-3 315 <그림Ⅲ-3> 3차원 3D CAD 형상 316 <그림Ⅲ-4> DMT공정 317 <그림Ⅲ-5> NP멘델 319 <그림Ⅲ-6> 제 1 호 BWillyBot / 제 2 호 BWillyBot 324 <그림Ⅲ-7> 스프린터(Sprinter) 326 <그림Ⅲ-8> SRP-1024 328 <그림Ⅲ-9> SRP-V 328 <그림Ⅲ-10> Stratasys의 Fortus 라인업 329 <그림Ⅲ-11> Fortus360mc 330 <그림Ⅲ-12> Stratasys의 Dimension 라인업 330 <그림Ⅲ-13> DimensionSST 1200 es 330 <그림Ⅲ-14> uPrint SE 331

<그림Ⅲ-18>	'프린트알봇 엘씨 브이2' /'타입 에이 머신 시리즈 1'3.	40
<그림Ⅲ-19>	리니어모터	46
<그림Ⅲ-20>	Objet30 OrthoDesk 사양 ······················3	51
<그림Ⅲ-21>	Cube / CubeX ····································	54
<그림Ⅲ-22>	교육용 3D 프린터 패키지 '오브젯 스콜라'3	59
<그림Ⅲ-23>	ZBuilder Ultra 스펙	60
<그림Ⅲ-24>	ZPrinter 850 스펙	61
<그림Ⅲ-25>	ReplicatorTM ····· 3	65
<그림Ⅲ-26>	ReplicatorTM 2의 스펙 ···································	67
	ReplicatorTM 2X ···································	
<그림Ⅲ-28>	메이커봇 디지타이저(스캐너)3	69
<그림Ⅲ-29>	RepRap version 1.0 (Darwin)	72
	RepRap version 2.0 (Mendel)	
<그림Ⅲ-31>	로스톡(Rostock) ····································	74
<그림Ⅲ-32>	CAD 툴체인	79
	Shapeways社의 3D 프린터 플랫폼 개념도 ···································	
<그림Ⅲ-34>	봇오브젝트가 공개한 3D 프린팅한 결과물3	83
	피코(Pico)	
	Afinia H-Series4	
	MakerGear M2 ····· 4	
<그림Ⅲ-38>	BFB社의 3D 프린터 ···································	08
<그림Ⅲ-39>	'3D 프린팅 펜'4	10
<그림Ⅲ-40>	3D 프린팅 펜으로 공예가들이 만든 작품의 예4	12
<그림Ⅲ-41>	파빌리온4	15
<그림Ⅲ-42>	휴대형 3D 프린터 팝팹(PopFab) 설치 및 동작 화면4	17
	SEMplice 구조 ···································	
	SEMplice 550 / SEMplice 300 ······················4	
<그림Ⅲ-45>	SEMplice 150 ······ 4:	23
<그림Ⅲ-46>	RaFaEl 4	24
	정)용 / 산업용 3D프린터 제품 포트폴리오 분석 42	
	개인용 3D 프린터의 가격별 모델 수 및 비중4	
<그림Ⅳ-2>'	H-1.1 3D Printer Kit'/'Xeed' ······ 4:	28
<그림IV-3> :	개인용 3D 프린터 제품 국적 비중4	28

<그림 $N-4$ > 개인용 3D 프린터 출력 가능 색상별 모델 수 및 비중429
<그림 $N-5>$ 'Finebot FB-200AX' / 3DTouchTM TRIPLE' ····································
<그림 \mathbb{N} -6> 개인용 3D 프린터의 출력 가능 재료별 모델 수 및 비중430
<그림N-7> 3D 프린터의 기술 방식 비중
<그림 W -8> 개인용 3D 프린터의 인쇄 크기 (W) 별 모델 수 및 비중 433
<그림Ⅳ-9> 'RapidBot Mega'/'MiiCraft' ··················433
<그림 ${ m IV}$ -10> 개인용 3D 프린터의 인쇄 크기(D)별 모델 수 및 비중434
<그림N-11> 립프라그(Leapfrog)의'Creatr' ·························434
<그림 W -12> 3D 프린터의 인쇄 크기(H)별 모델 수 및 비중435
<그림N-13> 'Sumpod Mega' / 'A6 HT' ·························435
<그림 ${ m IV}$ -14> 개인용 3D 프린터의 적층 두께별 모델수 및 비중436
<그림N-15> 'Factory 1.0'/'CB Printer' ······· 436
<그림 $N-16$ > 개인용 3D 프린터의 속도별 모델 수 및 비중437
<그림N-17> 'Fabbster kit' ······· 438
<그림 ${ m N}$ -18> 개인용 3D 프린터의 노즐 직경별 모델수 및 비중438
<그림N-19> 'Finebot Prototype' ··················439
<그림 ${ m IV}$ -20> 개인용 3D 프린터의 위치 정밀도 모델수 및 비중440
<그림N-21> 타입어머신(Type A Machines)의'Series 1' ················ 440
<그림 W -22> 개인용 3D 프린터의 본체 사이즈(W) 모델수 및 비중 441
<그림 W -23> 'Portabee 3D Printer Kit'/ 'RapidBot Mega' ····································
<그림 ${ m IV}$ -24> 개인용 3D 프린터의 본체 사이즈(D) 모델수 및 비중442
<그림 ${ m IV}$ -25> 개인용 3D 프린터의 본체 사이즈(D) 모델수 및 비중443
<그림N-26> 'Ilios HD Kit' ······ 444
<그림 $N-27>3D$ 프린터의 중량별 모델 수 및 비중
<그림N-28> 'Bukito Portable Mini Printer Kit' ·······················445
<그림N-29> ASSEMBLED / DIY 비중
<그림 $N-30$ > 산업용 3D 프린터의 가격별 모델 수 및 비중
<그림N-31> 'FreeForm Pico'/'EOSINT P 800' ··································
<그림 $N-32$ > 산업용 3D 프린터 제품 국적 비중449
<그림N-33> 산업용 3D 프린터 출력 가능 색상별 모델 수 및 비중 ·········· 449
<그림N-34> 'Finebot FB-200AX' / 3DTouchTM TRIPLE' ······· 450
<그림N-35> 3D 프린터의 기술 방식 비중451
<그림 W -36> 산업용 3D 프린터의 인쇄 크기 (W) 별 모델 수 및 비중 451
<그림N-37> 'Objet 1000TM'/'FreeForm Pico Plus27' ······ 452

<그림Ⅳ-38>	산업용 3D 프린터의 인쇄 크기(D)별 모델 수 및 비중453
<그림IV-39>	산업용 3D 프린터의 인쇄 크기(H)별 모델 수 및 비중 453
<그림IV-40>	산업용 3D 프린터의 적층 두께별 모델수 및 비중
<그림IV-41>	'Factory 1.0'/'CB Printer' 455
<그림IV-42>	산업용 3D 프린터의 속도별 모델 수 및 비중
<그림Ⅳ-43>	'ProJet 1500'
<그림Ⅳ-44>	산업용 3D 프린터의 본체 사이즈(W) 모델수 및 비중 457
<그림IV-45>	'Objet 1000TM'
<그림IV-46>	산업용 3D 프린터의 본체 사이즈(D) 모델수 및 비중 458
<그림IV-47>	'Perfactory Xede'
<그림Ⅳ-48>	산업용 3D 프린터의 본체 사이즈(H) 모델수 및 비중 459
<그림Ⅳ-49>	'EOSINT M 280'
<그림IV-50>	산업용 3D 프린터의 중량별 모델 수 및 비중460
<그림IV-51>	'FORTUS 900mcTM'