

│. 3D프린팅 산업 개요와 기술, 시장전망 ·······41

1. 3D프린팅 산업 개황	
1-1. 3D프린팅 개요	
1) 3D 프린팅 개요	
(1) 정의	
(2) 제조공정	
(3) 3D프린팅의 분류와 특징	
2) 3D프린터 주요 구조	
(1) 전기제어 파트	
(2) 기구부와 기계부	
(3) 핫플레이트	
(4) 익스쿠르더	
(5) 소프트웨어	
3) 3D 프린터의 작동원리와 프로세스	
4) 3D프린팅 제조의 특성과 전통 제조방식의 비교	
(1) 3D 프린팅 제조의 특성	
(2) 기존 제조방식과 3D프린팅 제조방식 비교	
1-2. 3D Printing 기술현황 및 연구개발 동향	
1) 3D Printing 기술현황	
(1) 3D Printing 기술 개요	
(2) 3D 프린팅 기술 분류	······ 52
(3) 3D프린팅 핵심기술	
(4) 소재별 3D프린팅 기술	
(5) 국내 3D프린팅 기술 수준	
2) 3D프린팅 연구개발과 주요국 동향	
(1) 3D프린팅 기술 연구개발 이슈	
(2) 주요국 3D프린팅 관련 정책 이슈	
(3) 3D프린팅 소재분야 기술개발 동향	
3) 3D 프린팅 분야 특허 현황	
(1) 2016년말 금속 3D프린팅 핵심 특허 해제	
(2) 3D프린팅 특허 동향과 기업전략	

(3) 3D프린터 분야 특허 동향	· 66
(4) 3D프린터 소재분야 특허 동향	· 71
1-3. 3D Printing 최근 유망기술 개발과 적용동향	· 75
1) 3D Printing 나노/마이크로 기술과 응용동향	· 75
(1) 3D 프린팅과 마이크로/나노 스케일 제조기술	· 75
(2) 3D 프린팅과 DMD기반 마이크로 광 조형과 의공학적 응용	· 76
(3) 3D 프린팅과 센서분야 응용동향	· 79
(4) 3D 프린팅과 전자부품 분야 응용동향	· 80
2) 3D Printing 제조/건설/서비스분야 응용동향	• 82
(1) 주택/건설 분야	• 82
(2) 패션/의류/신발/잡화 분야	· 82
(3) 자동차/자동차/오토바이부품 분야	• 84
(4) 항공/철도부품 분야	· 85
(5) 식품/의약품 분야	· 86
2. 3D프린팅 소재 기술, 시장동향	· 88
2-1. 3D 프린팅의 소재별 기술동향	· 88
1) 합성수지 소재	• 90
2) 금속 소재	• 92
3) 바이오 소재	· 97
(1) 바이오프린팅(Bio-Printing)	• 98
(2) 바이오세라믹	• 99
(3) 바이오 잉크	101
(4) 바이오소재의 분야별 개발동향	102
4) 기타 3D프린팅 소재와 개발동향	104
(1) BronzeFill	104
(2) WoodFill ·····	105
(3) BambooFill ·····	106
(4) 열가소성 엘라스토머	107
(5) Wolfbend TPU	108
(6) Lay-Ceramics	108
(7) BioFila ·····	109
(8) 점탄성 레이폼 필라멘트	109
(9) 정전기 방지용 필라멘트	110
(10) 친환경 PLA 필라멘트	111
2-2. 주요 3D 프린팅 소재별 시장동향과 전망	112
1) 합성수지 소재 분야	112

2) 금속 소재 분야	··· 114
3. 국내외 3D프린터 시장 동향과 전망	115
3-1. 세계 3D프린터 시장전망	··· 115
1) 세계 3D프린터 산업 및 시장동향	··· 115
(1) 3D 프린터 산업 개요	··· 115
(2) 3D 프린팅 시장동향	116
2) 부문별 3D프린터 세계 시장 동향	··· 121
(1) 산업용 3D프린터	··· 121
(2) 개인용 3D프린터	··· 128
3) 세계 3D프린터, 재료 시장 최근 전망	131
(1) 3D프린터 세계시장 전망	··· 131
(2) 3D프린터 재료 세계시장 전망	··· 133
3-2. 국내 3D프린터 시장전망	··· 138
1) 3D 프린터 국내 산업 및 시장동향	··· 138
2) 산업용 3D프린터 국내 시장전망	··· 139
3) 개인용 3D프린터 국내 시장전망	··· 140
3-3. 차세대 4D프린팅 개발과 전망	··· 143
1) 4D 프린팅 개요	··· 143
2) 4D 프린팅 연구개발 동향	··· 143
3) 4D 프린팅 시장 전망	··· 144
◢ 구내 3D 프리티 사언 반저 저랴과 초지도햐	1/5
ㄱㅋ 0D - 근징 근답 골근 근ㄱㅋ ㅣ 근징징 /-1 3D 프리티사언 반저저랴	1/5
1) 개 g	145
(1) 추진배경 ····································	145
(2) 문제점 분석	146
(3) 비전 및 추진전략	148
2) 세부 전략별 추진 전략	149
(1) <전략 1> 수요 연계형 성장기반 조성	149
(2) <전략 2> 비즈니스 활성화 지원	151
(3) <전략 3> 기술경쟁력 확보	155
(4) <전략 4> 3D프린팅 관련 제도 개선	158
3) 추진체계	159
4) 세부 추진과제 실천계획	161
4-2. 3D프린팅 전략기술 개발 로드맵(2015~2024)	··· 162
1) 추진배경	··· 162

	2) 전략기술 로드맵 수립방향	· 163
	3) 3D프린팅 환경 분석	· 164
	(1) 시장 동향	· 164
	(2) 기술 동향	· 164
	(3) 정책 동향	· 166
	(4) 특허/표준화 동향	· 168
	4) 추진목표 및 전략	· 169
	(1) 비전 및 목표	· 169
	(2) 추진 내용	· 170
	5) 3D프린팅 전략기술 로드맵 선정	· 175
	(1)「10대 핵심 활용분야」, 3대 분야 핵심 요소기술」 로드맵	· 175
	(2) 10대 핵심 활용분야 로드맵	· 176
	(3) 3대 분야(장비·소재·소프트웨어) 핵심 요소기술 로드맵	· 187
	6) 기대효과 및 활용방안	· 191
	(1) 기대효과	· 191
	(2) 활용방안	· 191
4	-3. 중소기업형 전략기술 개발과 로드맵	· 192
	1) 3D프린터 시스템분야 핵심기술개발 로드맵	· 192
	(1) 핵심기술의 선정과 연구목표	· 192
	(2) 3D프린팅 시스템 중소기업형 기술개발 로드맵	· 193
	2) 3D프린터 소재분야 핵심기술개발 로드맵	· 194
	(1) 핵심기술의 선정과 연구목표	· 194
	(2) 3D프린팅 소재 중소기업형 기술개발 로드맵	· 195

1. 국내 의료용 3D프린터 활용 실태와 최근동향	99
1-1. 국내 3D 프린팅 의료기기 현황	99
1) 개요 ~~~~~ 19	99
2) 국내 3D프린팅 의료기기(허가) 업체	00
(1) ㈜메디쎄이	00
(2) ㈜티앤알바이오팹	01
(3) ㈜스파이노텍	02
3) 국내 3D프린팅 의료기구(신고) 업체	02
(1) ㈜셀루메드	02
(2) (유)시로나덴탈시스템즈코리아	02
(3) 잽얼라인㈜	02

(4) ㈜코렌텍	· 203
(5) 서울아산병원	· 203
(6) 오스템임플란트(주)	· 203
(7) ㈜씨이피테크	· 203
4) 국내 3D 프린팅 의료기기 허가 제품 현황	· 204
(1) 허가 : 11개 제품	· 204
(2) 신고 : 7개 제품	· 206
1-2. 국내 3D프린팅 기술개발 동향과 성공사례	· 207
1) 신산업 창조 프로젝트와 3D 바이오 프린팅 기술 개발	· 207
(1) 신산업 창조 프로젝트	· 207
(2) 3D 바이오 프린팅용 골조직과 연조직 재생·재건용 의료제재 개발	· 208
2) 3D프린팅용 실리콘 러버 소재 개발	· 210
1-3. 3D프린터 제작 맞춤형 의료기기 규제완화와 가이드라인 마련	· 212
1) 3D프린터로 제작하는 맞춤형 의료기기 시속사용 등 규제완화	· 212
2) 3D프린팅 품질평가, 3D프린팅 의료기기 허가심사 가이드라인	· 213
(1) 개요	· 213
(2) 삼차원프린팅 장비, 소재, 소프트웨어, 출력물 품질평가 가이드라인 개요	· 215
(3) 삼차원프린팅 제조 의료기기 심사 가이드라인 개요	· 216
3) 3D프린터 제작 정형용 임플란트와 치과용 임플란트 고정체 가이드라인	· 216
2. 의료용 3D프린팅과 바이오(인공)장기 개발동향	· 218
2-1. 3D프린팅 이용 바이오(인공)장기 개요	· 218
1) 바이오 프린팅 시대의 등장과 전망	· 218
(1) 이식용 장기 부족 해결할 대안	· 218
(2) 글로벌 대기업 참여로 상용화 속도 가속화	· 219
2) 3D프린터의 의료용 활용 기술과 동향	· 220
(1) 의료용 3D프린팅 기술과 소재	· 220
(2) 국내·외 의료용 3D 프린팅 기술 동향	· 222
3) 세계 의료용 3D 프린팅 시장 규모	· 222
4) 3D프린팅 기술로 제작되는 바이오(인공)장기	· 223
5) 3D프린터의 인공장기 개발 방식	· 224
2-2. 국내외 3D프린팅 이용 인공뼈/관절 개발사례	· 226
1) 맞춤형 인공관절	· 226
2) 맞춤형 인공턱뼈	· 227
3) 맞춤형 대퇴골	· 228
4) 맞춤형 고관절/ 골반뼈	· 229
(1) 고관절 3D 모델	· 229

(2) 맞춤형 골반골절 환자 모델제작	····· 230
(3) 맞춤형 골반이식	····· 231
5) 맞춤형 두개골/ 머리뼈	······ 232
6) 맞춤형 쇄골	236
7) 맞춤형 인공척추	····· 237
8) 맞춤형 인공 안면뼈/ 안면기관	····· 238
(1) 인공 광대뼈	····· 238
(2) 인공 코	····· 239
(3) 인공 귀	····· 241
(4) 인공 안구	····· 242
9) 안면조소술용 3D프린터 보형물(뼈)	····· 243
(1) 안면조소술용 3D프린터 보형물(뼈)	····· 243
(2) 안면윤곽 복원수술과 3D프린팅	····· 244
(3) 부비동암 수술과 3D프린팅	····· 245
10) 초탄성뼈 소재개발	····· 246
2-3. 국내외 3D프린팅 이용 인공피부/ 장기/ 혈관 개발사례	····· 247
1) 인공피부	····· 247
2) 인공심장	····· 249
(1) 멈추지 않는 인공심장 개발	····· 249
(2) 이식 가능한 심장 개발	····· 249
3) 인공간	····· 251
4) 인공신장	····· 253
5) 인공혈관	····· 254
(1) 인공혈관	····· 254
(2) 대동맥 질환 수술	····· 255
6) 인공갑상선	258
2-4. 국내외 3D프린팅 이용 의료 보조재 개발사례	259
1) 맞춤형 의료 보형물 제작	259
2) 맞춤형 의수, 의족	261
(1) 3D프린터로 제작하는 의수, 의족	261
(2) 네덜란드 TU델프트, 소프트 로봇 3D프린팅 기술 개발(로봇핸즈)	263
3) 맞춤형 캐스트(부목)	264
4) 맞춤형 치아 보철물	265
5) 맞춤형 보청기	266
6) 맞춤형 칫솔	
2-5. 기타 3D프린터의 의료용 활용 사례	269
1) 의약품 3D프린팅	269

2) 3D 프린트용 바이오 잉크	·· 269
3) 태아 형상 제작	·· 272
4) 3D 프린터 이용 의료 교육	·· 273
(1) 실습용 카데바 출력	·· 273
(2) 모형을 이용한 수술실습	·· 274
3. 바이오(인공)장기 실태 및 동향	276
3-1. 바이오(인공)장기 개요	·· 276
1) 바이오(인공)장기 정의와 배경	·· 276
(1) 정의	·· 276
(2) 인공장기의 개발 배경	·· 277
2) 바이오(인공)장기의 분류	·· 278
3) 장기 공급원, 이종장기 현황	·· 280
(1) 의료용 장기 공급원과 이종장기	·· 280
(2) 국내 바이오이종장기 연구동향	·· 281
4) 바이오(인공)장기 연구동향	·· 283
(1) 바이오(인공)장기 연구동향	·· 283
(2) 이식용 장기 급속냉각 기술 개발	·· 284
3-2. 인체조직 현황 및 수급실태	·· 286
1) 인체조직 개요	·· 286
2) 인체조직 기증현황	·· 287
3) 인체조직 수급동향 추이	·· 290
4) 인체조직 수급 통계	·· 294
3-3. 바이오(인공)장기 종류와 개발동향	·· 298
1) 인공뼈 개발 동향	·· 298
(1) 뼈의 정의 및 구조	·· 298
(2) 뼈 이식 재료와 기술개발 동향	·· 299
2) 인공관절 개발 동향	304
(1) 인공관절의 정의 및 구성	·· 304
(2) 인공관절 수술 기술	306
(3) 인공관절의 기술개발 동향	307
3) 인공피부 개발 동향	308
(1) 인공피부 개요	308
(2) 창상피복재 동향	·· 310
(3) 인공피부 기술개발 동향	·· 315
4) 인공혈관 개발 동향	·· 317
(1) 인공혈관 개요	317

(2) 인공혈관 기술개발 동향	
5) 인공 혈액 개발 동향	
(1) 인공혈액 개요	
(2) 인공혈액 기술개발 동향	
6) 인공심장 개발 동향	
(1) 인공심장 개요	
(2) 인공심장 기술개발 동향	
7) 인공간 개발 동향	
(1) 인공간 개요	
(2) 인공간 기술개발 동향	
8) 기타 인공장기 개발 동향	
(1) 인공폐	
(2) 인공신장	
(3) 인공췌장	
(4) 인공눈	
(5) 인공혀	
(6) 인공자궁	
(7) 인공항문	
3-4. 바이오(인공)장기 시장동향	
1) 바이오(인공)장기 시장 개요	
(1) 인공심장 시장동향	
(2) 인공피부 시장동향	
(3) 인공간 시장동향	
(4) 인공관절 시장농향	
(5) 인공혈관 시장농향	
2) 국내 인공장기 시장의 과제와 전망	
(1) 정책즉면	
(2) 시상즉면	
(3) 기술즉면 ····································	
3-5. 인공상기와 모조재료 기술동양과 중소기업영 기술개발 도	= 맵 ······ 345
[) 특허종양	
 (1) 세계동양 (0) 그만도착 	
(2) 국내농앙 ····································	
 4) 중오기업영 백업기굴과 기굴개발 도드법 ···································	
(1) 중소기법형 핵심기술과 연구개발 폭표 결정	
(4) 한ㅎ상기 꽃 모소 세뇨의 중소기법영 기골도느법	

4. 생체재료 및 의료용 고분자 실태 및 개발동향	
4-1. 생체재료 개요	
1) 생체재료의 정의	
2) 생체재료의 분류	······ 352
3) 생체재료의 최근 개발 동향	
4-2. 생체재료별 종류 및 인공장기 적용현황	
1) 비분해성 고분자 재료와 인공장기 적용현황	
(1) 폴리올레핀	
(2) 폴리아마이드	
(3) 아크릴계 고분자(PMMA, PHEMA, PNiPAAm)	
(4) 폴리테트라플루오로에틸렌(PTFE)	
(5) 폴리에틸렌테레프탈레이트(PET)	
(6) 불소계 고분자	
(7) PVC	
(8) 폴리실록산	
(9) 고무	
(10) PU	
(11) 고강도 열가소성 수지	
(12) 하이드로겔(Hydrogels)	
2) 분해성 고분자 재료와 인공장기 적용현황	
(1) 지방족 폴리에스테르	
(2) 지방족 폴리카보네이트	
(3) Polycaprolactone ·····	
(4) Polyanhydrides	
(5) 폴리아미노산	
(6) PHB, PHV 및 공중합체	
(7) Polydioxanone	
3) 금속 생체재료와 인공장기 적용현황	
(1) 스테인리스강	
(2) Co-Cr 합금	
(3) 티타늄 및 합금	
(4) 형상기억합금	
4) 세라믹 생체재료와 인공장기 적용현황	
(1) 알루미나	
(2) 지르코니아	
(3) 수산화아파타이트	
(4) TCP	

(5) 바이오글라스	
5) 생체복합재료와 인공장기 적용현황	
4-3. 의료용 고분자 소재와 바이오(인공)장기 개발동향	
1) 의료용 고분자 개요	
(1) 혈액적합성 고분자	······ 372
(2) 조직적합성 고분자	
2) 의료용 고분자의 종류	
(1) 생체재 고분자	······ 374
(2) 생체분해성 바이오플라스틱	
3) 용도별 의료용 고분자재료와 제품 동향	
(1) 인공혈관용 고분자 재료	
(2) 인공심장 및 심장판막용 고분자재료	
(3) 인공간용 고분자재료	
(4) 인공폐용 고분자	
(5) 혈액정화용 고분자	
(6) 정형외과용 고분자	
(7) 치과용 고분자	
(8) 안과용 고분자	
(9) 서방성 의약제제용 고분자재료	
(10) 봉합사, 수술용 테이프와 접착제	
(11) 일회용 의료용품	
(12) 하이브리드 고분자재료 이용 조직세포 배양공학과 인공장기 개발	
4-4. 바이오세라믹스 기술동향과 중소기업형 기술개발 로드맵	
1) 개요	
(1) 정의 및 분류	
(2) 시장 동향	
2) 특허동향	
(1) 세계동향	
(2) 국내동향	
3) 중소기업형 핵심기술과 기술개발 로드맵	
(1) 중소기업형 핵심기술과 연구개발 목표 설정	
(2) 바이오세라믹스의 중소기업형 기술로드맵	
5. 의료용 3D프린팅, 바이오장기, 생체재료 관련 연구개발 테마	
5-1. 2017, 2016년 추진과제와 연구테마	
1) 7,000MPa·%급 멀티특성 구현 생체 분해성 금속 소재	
(1) 개요 및 필요성	

(2) 연구목표	
(3) 지원내용	
2) 나노촉매를 적용한 주름 개선용 바르는 인조 피부막 개발	
(1) 필요성	
(2) 연구목표	
(3) 지원내용	
3) 사람 피부의 촉각소자 구조 및 기능을 재현할 수 있는 로봇용 인공피부 소	자 및
로봇수술, 의수 적용을 위한 원천기술 개발	
(1) 필요성	
(2) 연구목표	
(3) 지원내용	
4) 3D 디지털 기술을 융합한 치아 프렙 시술용 자동화 시스템 개발	
(1) 필요성	
(2) 연구목표	
(3) 지원내용	
5) 나노메디컬 생체고분자 인조피부 소재 개발	
(1) 개발 내용	
(2) 활용분야	
(3) 개발기간	
6) 상온 3D 프린팅 Kinetic Metallization 공정용 신합금 개발	
(1) 개발 내용	
(2) 활용분야	406
(3) 개발기간	
7) 생체의료용 고기능성 초탄성합금 및 응용기술 개발	
(1) 개발 내용	
(2) 활용분야	
(3) 개발기간	
8) 3D프린팅 기반 인체 경조직 대체재 개발	
(1) 개발 내용	
(2) 활용분야	
(3) 개발기간	
9) 150kPa 이상의 접착력을 갖는 조직접합·치유 생체소재 개발	
(1) 개요 및 필요성	
(2) 연구목표	
(3) 지원내용	
10) 작업자 및 사회적약자 맞춤형 근골격 안전시스템 구현을 위한 복합 3D 프	.린팅
활용 창의 기술 개발	

(1) 픽 8 성	409
(2) 여구목표	410
(3) 지원내용	411
11) 3D 프린팅 기반 탄소 융·복합 유연소재 공정플랫폼 기술개발	412
(1) 필요성	412
(2) 연구목표	··· 412
(3) 지원내용	413
12) 3D 프린팅 표면 및 조형 상태 기반 프리뷰어 검증 도구 기술 개발	414
(1) 필요성	414
(2) 연구목표	414
(3) 지원내용	415
13) 다종소재 융복합 적층 3D프린팅 솔루션 기술개발	416
(1) 필요성	416
(2) 연구목표	416
(3) 지원내용	418
14) 고반사/고흡수/투명체의 3D프린팅 응용을 위한 복합센서 기반 3D 모델 획득 솔루션 개발·	418
(1) 필요성	418
(2) 연구목표	418
(3) 지원내용	··· 420
15) 바이오·메디컬 3D 프린팅 기반의 첨단 융·복합 의료기기 기술 개발	··· 420
(1) 연구목표	··· 420
(2) 연구내용	··· 420
(3) 연구 추진방법	··· 421
(4) 연구비 및 연구기간(기획연구 (1단계))	··· 421
5-2. 2016년 이전 추진 과제와 연구테마	··· 422
1) 생물공학기술을 이용한 피부용 바이오소재 및 제품개발(총괄)	··· 422
(1) 필요성	··· 422
(2) 연구목표	··· 422
(3) 지원내용	··· 423
2) (1세부) 항균·항염 기능의 펩타이드 및 화장품 개발	··· 423
(1) 연구목표	··· 423
(2) 지원내용	··· 423
3) (2세부) 미백·보습 기능의 바이오슈가 및 화장품 개발	··· 424
(1) 연구목표	··· 424
(2) 지원내용	··· 424
4) 생분해성 고분자 소재 기반 척추 고정/유합용 시스템 개발	··· 425
(1) 필요성	··· 425

(0) 4787	405
(2) 연구곡표	· 425
(3) 시원내용 ····································	· 426
5) 피두 재생들 위안 완두 직접 도포용 3D 마이오 프린닝 장미 개별	· 420
(1) 필요성 (0) 서그무포	· 426
(2) 연구족표	· 426
(3) 시원내용	• 427
0) 금축 3D 프던녕용 둘군둘 암당 0.04% 이아의 고둠위 서미용 다이다귬	407
현소재 세소 및 증용 기술 개발	· 427
(1) 월요성 (0) 성그무포	· 427
(2) 연구국표····································	· 428
(3) 시원내용 ····································	· 429
() 고경도/고구조정 D/C용 마그대표 잡금 개별 ···································	· 429 490
(1) 개념	· 429
(2) 지원 필요성 ···································	· 429 420
(3) 시원내용 ····································	· 430
8) 국내성 지묘 및 안업국성이 가능한 스마트 곤넥트렌스 조재 개월	· 430
(1) 월요성 (2) 여그모고	· 430 420
(2) 건가죽표 ····································	· 430 . 491
(3) 시원대중	· 431 . 491
9) 3D 프린닝용 전환경 고경도 고군자 조재 개월	· 431 491
(1) 개념	· 431 422
(2) 지원 필요성 ···································	· 432 432
(3) 시원내용	· 432 432
10) 3D 프던터 기반 구지획 및 구개획안면결은 재진 시물시스럽개될	· 433 433
(1) 월요성 (2) 여그모고	· 433 433
(2) 건가죽표 ····································	· 433 494
(3) 시원대중	· 454 . 494
11) 글실환 지료를 귀한 7000/MPA % 더 Load Dealing 중 생세군 해정 금국 조재 개월 ·····	· 454 . 494
 (1) 개표 및 필표/8 (2) 어그모고 	· 454 . 495
(2) 건가 득표 ······	· 455 . 495
(3) 시된대중 19) 고나키으고 가느하 15 N/mm2이사이 가하 저차려우 가느 조지저하요 새레스케 개밥	. 435 . 426
12) 자기지류가 가용한 1.5 1VCH2이용의 상한 접적적을 갖는 도적접합증 정제도제 개를 (1) 과어 미 피어서	· 430 . 436
 (1) 개효 및 필료'8 (2) 여그모고 	. 430 . 496
(2) 지의비유	- 430 . 197
(3) 시전대중	- 437 . 197
1) ㅋ효증 신원아이드노절 개원 가증경 스케럴드 국업 조재 개월	· 437 . 497
(1) /1과 굿 뒫쇼/상	• 437

(2) 연구목표	· 438
(3) 지원내용	· 438
14) 금속분말 소재 기반 SLS(Selective Lase Sintering) 3D프린터 개발	· 438
(1) 필요성	· 438
(2) 개발목표와 개발내용(Spec. 포함)	· 439
15) 의료시뮬레이터를 위한 고정밀 수술가이드용 인공 장기 모형의 3차원 프린팅 기술 개발	· 439
(1) 필요성	· 439
(2) 개발목표와 개발내용(Spec. 포함)	· 440
16) 탄소나노튜브(CNT)소재를 이용한 고기능성 섬유제품 3D프린터 국산화 개발	· 441
(1) 필요성	· 441
(2) 개발목표와 개발내용(Spec. 포함)	· 441
17) 고온 마이크로 사출성형 기술기반 생체삽입용 임플란트 제품개발	· 442
(1) 필요성	• 442
(2) 개발목표와 개발내용(Spec. 포함)	• 442
18) 3D 프린팅 기술을 활용한 미세입자 생산용 One-step 미세유체 칩 제작 기술 개발	· 443
(1) 개요와 필요성	· 443
(2) 개발목표와 개발내용(Spec. 포함)	• 444
19) 화학적 무기물 나노증착을 이용한 고내구성 고분자 인공관절 개발	· 444
(1) 개요와 필요성	· 444
(2) 개발목표와 개발내용(Spec. 포함)	· 445
20) 고접착능을 위한 치과용 흐름성 복합 레진 개발	· 445
(1) 개요	· 445
(2) 필요성	· 445
(3) 개발목표와 개발내용(Spec. 포함)	· 446
(4) 주요결과물	· 446
21) 3D 프린터용 치과 지르코니아 소재 개발	· 446
(1) 개요	• 446
(2) 필요성	· 446
(3) 개발목표와 개발내용(Spec. 포함)	· 447
(4) 주요결과물/개발기간	· 447
22) 골다공증 환자를 위한 골융합용 척추 임플란트 개발	· 448
(1) 필요성	· 448
(2) 개발목표와 개발내용(Spec. 포함)	· 448
(3) 주요결과물/ 개발기간	· 448
23) 수산화아파타이트 복합구조를 이용한 골절치료용 인공뼈 개발기술 개발	· 449
(1) 개요와 필요성	· 449
(2) 개발목표와 개발내용(Spec. 포함)	· 449

IJ
50
50
50
51
52
52
52
52
52
53
53
53
53
53
54
54
56
56
56
56
57
57
57
57
58
58
58
59
59
50
50
50 50
50 50 50
50 50 50 51
50 50 50 51 51

(3) 주요결과물	· 461
32) 연골조직 수복성능을 갖는 멤브레인형 의료용 소재 기술 개발	· 462
(1) 개요와 필요성	· 462
(2) 개발목표와 개발내용(Spec. 포함)	· 462
(3) 주요결과물	· 463

Ⅲ. 의료용 3D 프린팅, 바이오장기 관련 사업 참여업체 사업동향 …………467

1. 의료용 3D 프린팅 관련업체 사업동향
1-1. 국내기업
1) ㈜대림화학
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략468
2) ㈜덴티스
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략
3) ㈜캐리마
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략
4) 세원셀론텍(주)(코스피)
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략
5) ㈜HRS(코스닥) ····································
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략48]
6) ㈜메디쎄이(코넥스)
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략483
7) (주)시지바이오
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략487
8) Stratasys KOREA(弁)
(1) 회사현황
(2) 3D프린팅 관련 사업현황과 전략489
1-2. 해외기업
1) Stratasys
(1) 회사현황

(2) 3D프린팅 관련 사업현황과 전략	494
2) 3D Systems	495
(1) 회사현황	495
(2) 3D프린팅 관련 사업현황과 전략	496
3) XYZprinting	498
(1) 회사현황	498
(2) 3D프린팅 관련 사업현황과 전략	499
2. 의료용 바이오장기, 생체재료 관련 업체 사업동향	502
2-1. 국내기업	····· 502
1) ㈜나이벡(코스닥)	····· 502
(1) 회사현황	····· 502
(2) 바이오장기, 생체재료 관련 사업현황과 전략	503
2) ㈜메타바이오메드(코스닥)	505
(1) 회사현황	505
(2) 바이오장기, 생체재료 관련 사업현황과 전략	506
3) ㈜셀루메드(코스닥)	508
(1) 회사현황	508
(2) 바이오장기, 생체재료 관련 사업현황과 전략	509
4) ㈜오스코텍(코스닥)	511
(1) 회사현황	511
(2) 바이오장기, 생체재료 관련 사업현황과 전략	512
5) ㈜코렌텍(코스닥) ····································	513
(1) 회사현황	513
(2) 바이오상기, 생제재료 관련 사업현왕과 전탁	514
6) 테고사이언스(주)(코스닥) ····································	516
 (1) 외사연왕 (0) 방침수가로 개발권고 가격 방심원회가 가격 	516
(2) 마이오장기, 생세새료 관던 사업연광과 전탁	517
() 안스마이오메드(ㅜ)(코스닥) ····································	518 ·····
(1) 외사연왕 (2) 비신승자가 재케케크 과러 사어처친과 거랴	510
(2) 마이오경기, 생세재료 관련 자집원왕과 신덕	020 520
6) 田也드폰마이오(고스틱) (1) 최자처하	522
(1/ 거/T건정 (9) 바이어자기 새케게린 관련 사어처하고 거란	502
(4) 바이고경기, 78세세표 선언 사업원형과 신덕 ···································	523
의 (T) 17 17 17 12	520
(1) 거(기 긴 5 (9) 바이 0 자기 새체 개근 과러 사어 천하고 저랴	526
(4) 비키도경기, 경제제표 한번 지급한정적 신득	020

1. 3D 프린터를 이용하여 제조되는 환자 맞춤형 정형용 임플란트의 허가·심사 가이드라인(2016.10)…	· 545
1-1. 개요	· 545
1) 목적	· 545
2) 3D 프린터로 제조되는 의료기기의 품질관리를 위한 고려사항	· 546
1-2. 기술문서 심사 및 허가 절차	· 548
1-3. 허가 심사의뢰서 작성 시 고려사항	· 549
1) 명칭	· 549
2) 모양 및 구조	· 549
(1) 모양 및 구조 - 작용원리	· 549
(2) 모양 및 구조 - 외형	· 550
(3) 모양 및 구조 - 치수 및 중량	· 551
3) 사용목적	· 551
4) 사용방법	· 552
5) 사용기간	· 553
6) 시험규격	· 553
1-4. 첨부자료 제출 및 심사시 고려사항	· 554

IV. 3D 프린터 이용 환자 맞춤형 의료기기 허가·심사 가이드라인(요약, 식약처) ·····545

10) ㈜바이오솔루션(구, 엠씨티티바이오)
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략
11) ㈜코웰메디
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략
12) ㈜쿠보텍
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략
13) (주)이노본
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략
2-2. 해외기업
1) Organovo
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략
2) Pandorum Technologies
(1) 회사현황
(2) 바이오장기, 생체재료 관련 사업현황과 전략

I) 사용목석에 관한 자료	··· 554
2) 작용원리에 관한 자료	554
3) 생물학적 안전에 관한 자료	554
4) 성능에 관한 자료	556
(1) 시료의 선정	557
5) 물리·화학적 특성에 관한 자료	557
(1) 미세구조 분석 자료	558
(2) 내부 결함 및 기공도 평가 자료	558
(3) 표면거칠기 평가 자료	560
(4) 표면경도 평가 자료	··· 562
(5) 밀도 평가 자료	563
(6) 치수 유효성 분석 자료	565
(7) 성분 분석 자료	569
(8) 생분해성 분석 자료	570
(9) 잔류물 분석 자료	570
1-5. 국내외 가이드라인 및 국제 규격 현황	··· 572
1) 국내 가이드라인	··· 572
(1) 3D 프린터를 이용하여 제조되는 환자 맞춤형 의료기기 허가심사 가이드라인(2015)··	·· 572
2) 국외 가이드라인	··· 572
(1) Draft Guidance for Industry and FDA Staff -	
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) 	··· 572
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 	··· 572 ·· 573
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ··········· (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 3) 국제 규격 현황 ···································	··· 572 ·· 573 ··· 573
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 3) 국제 규격 현황	··· 572 ·· 573 ··· 573 ··· 573
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ······· (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 3) 국제 규격 현황 ······ (1) ISO/ASTM ······ (2) ISO ······· 	··· 572 ·· 573 ··· 573 ··· 573 ··· 574
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ······ (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 3) 국제 규격 현황 ····· (1) ISO/ASTM ····· (2) ISO ····· 1-6. 품목별 성능시험규격 설정 사례 ····· 	572 573 573 573 574 575
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ······ (2) 일본 후생성 - 3차원 적층기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) 3) 국제 규격 현황 ····· (1) ISO/ASTM ····· (2) ISO ····· 1-6. 품목별 성능시험규격 설정 사례 ····· 1) 인공 엉덩이 관절 ····· 	572 573 573 573 574 575
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016)	572 573 573 573 574 575 575
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016)	572 573 573 573 574 575 575 577 578
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016)	572 573 573 573 574 575 575 578 578
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ····································	572 573 573 573 575 575 575 578 578 578
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016)	572 573 573 573 574 575 575 578 578 578
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ····································	572 573 573 573 574 575 575 578 578 578 578
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016)	572 573 573 574 575 575 577 578 578 578 579 579
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ····································	572 573 573 574 575 575 577 578 578 578 579 579 579 579
 (1) Draft Guidance for Industry and FDA Staff - Technical Considerations for Additive Manufactured Devices(2016) ·········	572 573 573 573 574 575 575 577 578 578 578 579 579 579 579 579

2-3. 허가 심사의뢰서 작성 시 고려사항	· 583
1) 명칭	· 583
2) 모양 및 구조	· 583
(1) 모양 및 구조 - 작용원리	· 583
(2) 모양 및 구조 - 외형	· 584
(3) 모양 및 구조 - 치수 및 중량	· 585
3) 사용목적	· 586
4) 사용방법	· 586
5) 사용기간	· 587
6) 시험규격	· 587
2-4. 첨부자료 제출 및 심사시 고려사항	· 588
1) 사용목적에 관한 자료	· 588
2) 작용원리에 관한 자료	· 588
3) 생물학적 안전에 관한 자료	· 588
4) 성능에 관한 자료	· 590
(1) 시료의 선정	· 591
5) 물리·화학적 특성에 관한 자료	· 591
(1) 미세구조 분석 자료	· 592
(2) 내부 결함 및 기공도 평가 자료	· 592
(3) 표면거칠기 평가 자료	· 594
(4) 표면경도 평가 자료	· 596
(5) 밀도 평가 자료	· 597
(6) 치수 유효성 분석 자료	· 599
(7) 성분 분석 자료	· 602
(8) 생분해성 분석 자료	· 603
(9) 잔류물 분석 자료	· 603
2-5. 국내외 가이드라인 및 국제 규격 현황	· 605
1) 국내 가이드라인	· 605
(1) 3D 프린터를 이용하여 제조되는 맞춤형 의료기기 허가심사 가이드라인(2015)…	· 605
2) 국외 가이드라인	· 605
(1) Draft Guidance for Industry and FDA Staff -	
Technical Considerations for Additive Manufactured Devices(2016)	· 605
(2) 일본 후생성 - 3차원 적증기술을 활용한 정형외과용 임플란트에 관한 평가지표(안)(2014) …	· 606
3) 국제 市격 현황····································	· 606
(1) ISO/ASTM	· 606
	· 607
- 2-6. 지과용 임플란트 고정체의 성능시험규격 설정 사례	$\cdot 608$

3. 3D 프린터를 이용하여 제조되는 피부재생용 생분해성 지지체의 안전성 및 성능시험 가이드라인(2016.12) ····	· 609
3-1. 개요	· 609
1) 적용범위	· 609
3-2. 국내외 규격 및 문헌	· 610
1) 생물학적 안전에 관한 자료	· 610
2) 물리・화학적 특성 및 성능에 관한 자료	· 610
3-3. 안전성 및 성능에 관한 시험 항목	· 613
1) 생물학적 안전성 검증 시험항목	· 613
2) 물리・화학적 특성 및 성능에 관한 시험항목	· 615
(1) 물리·화학적 특성 시험항목	· 615
(2) 성능 시험 항목	· 616
3) 시료의 선정	· 616
4) 물리・화학적 특성에 관한 시험방법	· 617
(1) 외관 검사	· 617
(2) 밀도 측정	· 618
(3) 원재료, 완제품 및 잔류물에 대한 성분 분석	· 619
(4) 완제품 층간 접착력	· 621
(5) 재현성 (예시)	· 621
(6) 다공성 크기 및 공극률	· 622
5) 성능에 관한 시험방법	· 624
(1) 변형 회복률 측정	· 624
(2) 재료 변형 민감도 측정	· 625
(3) 생분해성 시험	· 627
(4) 세포의 부착 및 증식평가 (예시)	· 629
(5) 조직 형성능 (예시)	· 629
(6) 인장강도 측정	· 630
(7) 인열(tearing)강도 측정	· 631
(8) 압입시험	· 632
(9) 수분 투과성 측정	· 634
4. 3D 프린터를 이용하여 제조되는 혈관재생용 생분해성 지지체의 안전성 및 성능시험 가이드라인(2016.12) ····	• 636
4-1. 개요	· 636
1) 적용범위	· 636
4-2. 국내외 규격 및 문헌	· 637
1) 생물학적 안전에 관한 자료	· 637
2) 물리・화학적 특성 및 성능에 관한 자료	· 637

4-3. 안전성 및 성능에 관한 시험 항목6	340
1) 생물학적 안전성 검증 시험항목	540
2) 물리·화학적 특성 및 성능에 관한 시험 항목6	542
(1) 물리·화학적 특성 시험항목6	542
(2) 성능 시험 항목6	543
3) 시료의 선정	343
4) 물리・화학적 특성에 관한 시험방법	344
(1) 외관 검사	3 44
(2) 사용 가능한 길이 측정	345
(3) 이완 내부직경 측정	345
(4) 가압 내부직경 측정	546
(5) 벽 두께 측정6	347
(6) 굽힘 직경/반경 측정6	349
(7) 밀도	350
(8) 완제품 및 잔류물에 대한 성분 분석6	51
(9) 완제품 층간 접착력6	353
(10) 재현성 (예시)6	353
(11) 다공성 크기 및 다공도	354
5) 성능에 관한 시험방법	356
(1) 원주 인장강도 측정	356
(2) 수직 인장강도 측정	357
(3) 파열강도 측정	359
(4) 반복 편치 후 강도 측정	561
(5) 봉합부위 유지 강도 측정	62
(6) 투과성 측정	363
(7) 물 유입압력 측정6	64
(8) 생체 내 동적환경에서의 순응도 측정(Dynamic compliance)6	365
(9) 변형 회복률 측정6	366
(10) 재료 변형 민감도 측정	368
(11) 세포의 부착 및 증식 (예시)	369
(12) 조직 형성능 (예시)	570
(13) 생분해성	570
5. 국내외 참고문헌(규정, 규격, 가이드라인) 리스트	373
	373
1) 식품의약품안전처 규정 및 가이드라인	373
2) FDA(Food and Drug Adiministration) 가이드라인6	373

3) ISO(International Organization for Standadization) 국제 표준	· 673
4) ASTM(American Society for Testing and Meterials) 규격	· 676
5) EC(European Commission) 가이드라인	· 680
5-2. 기타 기관 가이드라인	· 681

│. 3D프린팅 산업 개요와 기술, 시장전망	41
<표1-1> 재료형태와 기술별 3D 프린팅 기술 방식	42
<표1-2> 3D프린팅 재료별 대표기술과 원리	43
<표1-3> 3D프린팅 6대 제조방식별 특징	43
<표1-4> 기존 제조방식과 3D프린팅 제조방식 비교	49
<표1-5> 전통제조업과 3D 프린팅을 통한 제조업 비교	49
<표1-6> 3D 프린팅 주요 산업 활용 사례	50
<표1-7> 응용분야별 3D 프린팅 활용과 특징	50
<표1-8> 3D 프린팅 적층방식별 기술 분류	53
<표1-9> 3D 프린팅 단계별 요소기술	54
<표1-10> 재료 형태에 따른 3D 프린팅 기술 분류와 대표 기종	55
<표1-11> 3D 프린팅 소재의 적용	55
<표1-12> 적층방식 및 원재료별 3D 프린팅 기술 적용과 특징	57
<표1-13> 3D 프린팅 대표기술 만료시기 및 파급효과	60
<표1-14> 3D프린팅 기술관련 주요 이슈	60
<표1-15> 해외 주요국가의 3D 프린터 기술개발 관련 지원	62
<표1-16> 3D 프린팅용 소재 기술기발	63
<표1-17> 3D 프린팅 분야 기업별 특허 보유 현황	66
<표1-18> 재료 형태에 따른 3D프린팅 기술 분류와 대표기업	88
<표1-19> 3D 프린팅 주요 소재와 시장 환경	90
<표1-20> 3D프린팅 소재의 적용	92
<표1-21> 3D프린팅용 소재 기술기발	93
<표1-22> 제조공정에 따른 타이타늄 분말 특성	94
<표1-23> 3D 프린팅 원료 중 플라스틱 세계 시장 현황	113
<표1-24> 3D 프린터 제조사의 사용금속 및 응용제품	114
<표1-25> 주요국 정책 동향	120
<표1-26> 산업분야별 3D 프린터 활용 현황(2012년)	124
<표1-27> 글로벌 산업용 3D 프린터 시장 점유율 및 판매 현황	127
<표1-28> 3D프린팅용 소재 기술개발 예시	156
<표1-29> 주요 SW분야별 예시	157
<표1-30> 분야별 3D프린팅 예상 피해	159
<표1-31> 부처별 세부 추진과제	161

<표1-32>	세계 시장 현황 및 전망	164
<표1-33>	국내 시장 현황 및 전망	164
<표1-34>	국내 3D프린팅 관련 투자규모	166
<표1-35>	3D프린팅 관련 해외 정책 동향	166
<표1-36>	10대 핵심 활용분야 주요 내용	170
<표1-37>	10대 핵심 활용분야별 목표 및 사업화 전략	171
<표1-38>	분야별 요소기출	172
<班1-39>	10대 핵심 활용분야와 15대 전략 기술의 연계도	174
<班1-40>	핵심기술의 선정과 단계별 연구목표	192
<표1-41>	핵심기술의 선정과 단계별 연구목표	194

<표2-1> 사업화 추진성과 ('16. 6월말 기준)	· 207
<표2-2> 국내 장기이식대기자 추이	· 278
<표2-3> 생체재료에 따른 인공장기 분류	· 279
<표2-4> 질환별 인공장기의 연구와 응용	· 279
<표2-5> 부족장기 대체방법	· 280
<표2-6> 장기부족 해결책	· 281
<표2-7> 연도별 인체조직 기증 희망 서약자 현황	· 286
<표2-8> 연도별 인체조직은행 현황	· 286
<표2-9> 인체조직 기증과 장기 기증의 차이점	· 287
<표2-10> 기증희망 서약자 증가 추이	· 289
<표2-11> 주요국 인구 100만명 당 뇌사 기증자 수	· 290
<표2-12> 인체조직 유형별 생산(국내 가공) 및 수입 현황	· 291
<표2-13> 인체조직 국가별 수입 현황	• 292
<표2-14> 인체조직 유형별 국내 자급 비중	· 292
<표2-15> 인체조직 생산 및 수입현황	· 294
<표2-16> 한국인체조직기증지원본부(KOST)를 통한 기증희망 서약자 증가 추이	· 294
<표2-17> 한국인체조직기증원(KFTD)를 통한 인체조직 기증자 증가 추이	· 294
<표2-18> 인체조직 유형별 국내 자급 비중	· 295
<표2-19> 연도별 인체조직은행 운영현황	· 295
<표2-20> 연도별 인체조직 기증 희망 서약자 현황	· 295
<표2-21> 국가별 인체조직 수입현황	· 296
<표2-22> 인체조직 국가별 수입 현황	· 296
<표2-23> 인체조직 유형별 생산(국내 가공) 및 수입 현황	· 297
<표2-24> 뼈 이식 재료별 분류	· 300
<표2-25> 뼈 치유를 위한 재료의 종류 및 장단점	· 301

<표2-26>	인공관절 제품 및 소재	305
< 표2-27>	인공고관절의 구성품과 주요 기능	305
<표2-28>	인공슬관절의 종류	307
<표2-29>	인공피부의 종류	309
<표2-30>	재생의학용 피부특징	309
<표2-31>	화상의 분류와 내용	310
<표2-32>	화상의 종류와 특징	310
<표2-33>	창상의 분류	311
<표2-34>	세계 창상피복재 시장 규모 예측(2013~2020)	311
<표2-35>	창상피복재 주요 기업 매출액 현황	312
<표2-36>	대륙별 창상피복재 시장 규모	313
<표2-37>	국내 창상피복재 시장 현황	313
<표2-38>	창상피복재 수급추이	315
<표2-39>	주요 기업의 인공피부 기술개발 동향	316
<표2-40>	인공혈관의 분류 및 적용범위	317
<표2-41>	상용화 된 인공혈관의 종류와 재료 및 특징	319
<표2-42>	인공혈관 개발 방향	320
<표2-43>	인공혈액 개발동향	321
<표2-44>	인공심장 분류	323
<표2-45>	바이오 인공간 개발 현황	325
<표2-46>	인공항문의 종류	332
<표2-47>	주요 국가의 인공심장 정책 및 규정 비교	335
<표2-48>	인공관절 세계 시장점유율 현황	338
<표2-49>	글로벌 고관절 및 슬관절 시장규모	340
<표2-50>	연도별 인공관절 세계 시장 성장 주이	341
<표2-51>	연도별 인공관절 시장규모 성장률	341
< - 3.2-52>	연도별 인공관절 국내 시장	342
<	선정된 핵심요소기술에 대한 연구 목표	349
< <u>-</u> 32-54>	생체재료의 문류	353
< 出2-55>	생제재료도의 비문해성 고문자의 응용 예	356
< 进2-56>	생제재됴뵹 생제문해성 고문자의 특성 및 용도	376
< 进2-57>	의됴뵹 생제재됴의 석봉부위와 응용	388
< 进2-58>	바이오세라믹스 제품분류 관점의 범위	390
< 进2-59>	바이오세라믹스 공급망 관점의 범위	390
<进2-60>	바이오세라믹스 시상 현황 및 전망	391
<표2-61>	선성된 핵심기술에 대한 연구 목표	396

Ⅲ. 의료용 3D 프린팅, 바이오장기 관련 사업 참여업체 사업동향 ······	··· · 467
<표3-1> ㈜대림화학 업체 프로필	····· 467
<표3-2> 3D프린터 종류와 특징	468
<표3-3> 주요 특허보유 현황	469
<표3-4> ㈜덴티스 업체 프로필	····· 470
<표3-5> 주요 제품 현황과 특징	····· 470
<표3-6> 덴티스 개발 3D 프린터, '제니스'	····· 471
<표3-7> 캐리마 업체 프로필	····· 472
<표3-8> 주요 제품 현황	····· 472
<표3-9> 시리즈별 이미지와 출력물	····· 473
<표3-10> 주요 연구개발 실적	474
<표3-11> 주요 특허보유 현황	474
<표3-12> 세원셀론텍(주) 업체 프로필	475
<표3-13> 주요제품 및 서비스 매출현황 및 비중	476
<표3-14> 주요 연구과제 및 특허현황	478
<표3-15> ㈜HRS 업체 프로필 ······	480
<표3-16> 주요 연구개발 실적 ······	481
<표3-17> 주요 특허보유 현황 ······	481
<표3-18> ㈜메디쎄이 업체 프로필 ······	482
<표3-19> 주요 특허보유 현황 ······	484
<표3-20> (주)시지바이오 업체 프로필 ······	485
<표3-21> 수요 제품 현황······	486
<표3-22> 주요 특허보유 현왕 ···································	488
<표3-23> Stratasys KOREA 업제 프로필 ···································	488
<표3-24> Stratasys 업체 프로필 ···································	493
<표3-25> 구요 특허모류 연왕····································	495
<표3-20> 3D Systems 업세 프도필 ···································	496 406
<표3-212 구요 제품 연왕 ···································	490
<표3=26/ 구표 특이모ㅠ 연용 /포2=20/ VV7nrinting 어퀜 포르핀	490
< 표3 23/ X12piniung 답제 프로필 < 프 2-30 > 즈 0 궤프 천하	490
< 프3 30/	499 502
< 표3 31/ (1) 1 1 1 1 1 1 1 ·····················	504
(표3 02/ + 표 단 / 개일 일 + < 표3-33> 주 9 특허 비 유 혀 화 ·································	504
<	505
<	506
<표3-36> 주요 연구개발 실적	507

<표3-37>	주요 특허보유 현황	508
<표3-38>	㈜셀루메드 업체 프로필	508
<표3-39>	계열회사 현황	509
<표3-40>	주요 연구개발 실적	510
<표3-41>	주요 특허보유 현황	510
<표3-42>	㈜오스코텍 업체 프로필	511
<표3-43>	주요 연구개발 실적	513
<표3-44>	주요 특허보유 현황	513
<표3-45>	㈜코렌텍 업체 프로필	514
<표3-46>	주요 연구개발 실적	515
<표3-47>	주요 특허보유 현황	515
<표3-48>	테고사이언스(주) 업체 프로필	516
<표3-49>	주요품목 매출실적 및 비중	517
<표3-50>	주요 연구개발 실적	518
<표3-51>	주요 특허보유 현황	518
<표3-52>	한스바이오메드(주) 업체 프로필	519
<표3-53>	주요 연구개발 실적	520
<표3-54>	주요 특허보유 현황	521
<표3-55>	㈜인트론바이오 업체 프로필	522
<표3-56>	주요제품 및 서비스 현황과 비중	523
<표3-57>	주요 연구과제 및 특허현황	525
<표3-58>	㈜다림티센 업체 프로필	526
<표3-59>	주요 연구개발 실적	527
<표3-60>	주요 특허보유 현황(최근 3년)	527
<표3-61>	㈜바이오솔루션 업체 프로필	528
<표3-62>	주요 연구개발 실적	530
<표3-63>	주요 특허보유 현황	530
<표3-64>	㈜코웰메디 업체 프로필	531
<표3-65>	주요 제품 현황	532
<표3-66>	주요 특허보유 현황	533
<표3-67>	㈜쿠보텍 업체 프로필	534
<표3-68>	주요 제품 현황	534
<표3-69>	주요 특허보유 현황(최근 3년)	535
<班3-70>	(주)이노본 업체 프로필	536
<표3-71>	'프레본(FRABONE)' 제품 특성	536
<班3-72>	Organovo 업체 프로필 ······	538
<班3-73>	주요 특허보유 현황	540

<표3-74> P	andorum Technologie	s 업체	프로필		54	1
-----------	---------------------	------	-----	--	----	---

IV. 3D 프린터 이용 환자 맞춤형 의료기기 허가·심사 가이드라인(요약, 식약처) ·····545

<표4-1> 접촉부위 및 시간에 따른 초기 평가시험 자료
<표4-2> 추가적 생물학적 평가시험 자료
<표4-3> 정형용 임플란트의 생물학적 안전성 평가 항목 비교
<표4-4> 공기가 제거된 물의 밀도
<표4-5> 금속 소결품 나비의 보통공차(mm)
<표4-6> 금속 소결품 높이의 보통공차(mm)
<표4-7> 접촉부위 및 시간에 따른 초기 평가시험자료
<표4-8> 추가적 생물학적 평가시험자료
<표4-9> 치과용 임플란트 고정체의 생물학적 안전성 평가 항목
<표4-10> 공기가 제거된 물의 밀도
<표4-11> 금속 소결품 나비의 보통공차(mm)
<표4-12> 금속 소결품 높이의 보통공차(mm)
<표4-13> 접촉부위 및 시간에 따른 초기 평가시험
<표4-14> 추가적 생물학적 평가시험
<표4-15> 피부재생용 생분해성 지지체의 물리·화학적 특성 등에 대한 시험항목 예시615
<표4-16> 피부재생용 생분해성 지지체 성능 특성에 대한 시험항목 예시616
<표4-17> 접촉부위 및 시간에 따른 초기 평가시험641
<표4-18> 추가적 생물학적 평가시험
<표4-19> 혈관재생용 생분해성 지지체의 물리·화학적 특성 등에 대한 시험항목 예시642
<표4-20> 혈관재생용 생분해성 지지체의 성능 특성에 대한 시험항목 예시643

│. 3D프린팅 산업 개요와 기술, 시장전망 ······	41
<그림1-1> 3D 프린팅 단계별 제조공정	41
<그림1-2> 3D 프린팅이용 제품 제작과정	······ 42
<그림1-3> 3D 프린터 구조	44
<그림1-4> 3D 프린팅 작동원리	······ 47
<그림1-5> 3D 프린팅의 산업적 응용 분야와 사례	······ 52
<그림1-6> 3D 프린팅에 사용되고 있는 소재	56
<그림1-7> 국가별 3D 프린팅 기술 활용도 (설치대수)	58
<그림1-8> (a) 적층공장 (b) 적층기술로 만든 5m 티타늄빔	63
<그림1-9> 스페이스-X가 엔진에 사용할 금속 3D프린팅 부품	65
<그림1-10> 3D적층제조 시스템 기술의 국가·연도별 출원동향	
<그림1-11> 해외특허 주요 출원인의 출원 현황	
<그림1-12> 연도별 국내 출원동향 및 내국인/출원인 출원비율	
<그림1-13> 국내 주요출원인의 출원 현황	
<그림1-14> 3D 프린터용 소재의 국가·연도별 출원동향	······ 71
<그림1-15> 해외특허 주요 출원인의 출원 현황	······ 72
<그림1-16> 연도별 국내 출원동향 및 내국인/출원인 출원비율	······ 73
<그림1-17> 국내 주요출원인의 출원 현황	····· 74
<그림1-18> 3D 프린팅 기술	
<그림1-19> SLA 3D 프린팅 기술	77
<그림1-20> 마이크로 광조형 시스템	····· 77
<그림1-21> 마이크로 구조물 제작	····· 78
<그림1-22> 생분해성 및 다중재료 마이크로 구조물 제작	····· 78
<그림1-23> 3D 프린팅 기술을 이용한 유연 촉각센서 제작 및 적용	
<그림1-24> 크루즈 컨트롤 스위치 제작	80
<그림1-25> 3D 프린터로 제작된 리복의 뉴발란스 맞춤형 런닝화	83
<그림1-26> 혼다가 3D프린터로 만든 전기차 '마이크로 커뮤터(Micro Commuter)'	
<그림1-27> 3D프린터로 제작된 초경량 오토바이	85
<그림1-28> 3D 프린터로 제작된 항공기 부품	
<그림1-29> 푸드잉크, 레스토랑의 메뉴 이미지	
<그림1-30> 3D 프린팅 공정의 분류	
<그림1-31> 다축 금속 프린팅 기술	

<그림1-32>	세포를 적층하는 모습	. 98
<그림1-33> :	3D프린팅 이용 체내 삽입형 제품 제작 이미지	102
<그림1-34> :	3D프린팅 이용 조직지지체 제품 제작 이미지	103
<그림1-35>	청동 필라멘트 소재 3D프린팅 제품 제작 이미지	105
<그림1-36>	우드(목재) 필라멘트 소재 3D프린팅 제품 제작 이미지	105
<그림1-37>	뱀부(대나무) 필라멘트 소재	107
<그림1-38>	열가소성 엘라스토머 소재로 제작한 제품 이미지	107
<그림1-39> '	TPU 소재로 제작한 제품 이미지	108
<그림1-40>	Ceramics 소재로 제작한 제품 이미지	108
<그림1-41> 1	BioFila 소재로 제작한 제품 이미지	109
<그림1-42>	레이폼 필라멘트 소재와 다공질 구조	110
<그림1-43>	레이폼 필라멘트 소재와 다공질 구조	111
<그림1-44>	금속 3D 프린터 시장점유율	114
<그림1-45> :	3D프린팅 시장 규모	116
<그림1-46> 3	3D프린팅 시장 전망	117
<그림1-47>	산업용 3D 프린터 국가별 설치비중	118
<그림1-48>	개인용 3D 프린터 연도별 판매 추이	118
<그림1-49>	산업용 3D 프린터 업체별 점유율(2013년)	119
<그림1-50>	개인용 3D 프린터 업체별 점유율(2012년)	119
<그림1-51>	국가별 3D 프린터 장비 설치 점유율	121
<그림1-52>	글로벌 산업용 3D프린터 시장 전망	122
<그림1-53>	산업용 3D 프린터 평균 판매 단가 추이	125
<그림1-54> :	Stratasys와 3D Systems의 연도별 M&A 추이	126
<그림1-55>	글로벌 산업용 3D 프린터 시장 점유율 및 판매 현황	126
<그림1-56>	해외의 주요 3D 프린터 제품 맵	127
<그림1-57>	개인용 3D 프린터 연도별 판매 추이	128
<그림1-58>	개인용 3D프린터 시장 점유율 현황 (2012년 기준)	130
<그림1-59> :	3D Systems VS. Stratasys 국가별 Family 등록 특허 현황	131
<그림1-60> :	3D프린터의 세계 시장규모 추이와 예측	132
<그림1-61>	일본국내에서 3 D프린터로 조형하는 제품/용도	133
<그림1-62> :	3D프린터 재료의 세계 시장의 방식별 구성비 (2016년 전망)	135
<그림1-63> :	3D프린터 재료의 세계 시장규모 추이와 예측	135
<그림1-64> :	3D프린팅 디자인 유통 플랫폼 개념도	153
<그림1-65> :	3D프린팅 콘텐츠 플랫폼 개념도	153
<그림1-66> :	3D프린팅 산업 발전 추진체계(안)	160
<그림1-67> :	3D프린팅 기술로드맵 수립 방향	163
<그림1-68>	주요국별 3D프린팅 적용 제품과 사례	165

연도별 특허 출원동향 및 국가별 점유율	168
10대 핵심 활용분야 로드맵(2015~2024)	176
치과용 의료기기분야 로드맵(2015~2024)	177
인체이식 의료기기분야 로드맵(2015~2024)	178
맞춤형 치료물분야 로드맵(2015~2024)	179
스마트 금형분야 로드맵(2015~2024)	180
맞춤형 개인용품분야 로드맵(2015~2024)	181
3D 전자부품분야 로드맵(2015~2024)	182
수송기기 부품분야 로드맵(2015~2024)	183
발전용 부품분야 로드맵(2015~2024)	184
3D프린팅 디자인 서비스분야 로드맵(2015~2024)	185
3D프린팅 콘텐츠 유통 서비스분야 로드맵(2015~2024)	186
3대 분야(장비·소재·소프트웨어) 핵심 요소기술 로드맵(2015~2024)	187
장비 분야 핵심 요소기술 로드맵(2015~2024)	188
소재 분야 핵심 요소기술 로드맵(2015~2024)	189
소프트웨어 분야 핵심 요소기술 로드맵(2015~2024)	190
3D프린팅 시스템 중소기업형 기술개발 로드맵	193
3D프린팅 소재 중소기업형 기술개발 로드맵	195
	연도별 특허 출원동향 및 국가별 점유율 10대 핵심 활용분야 로드맵(2015~2024) 치과용 의료기기분야 로드맵(2015~2024) 인체이식 의료기기분야 로드맵(2015~2024) 스마트 금형분야 로드맵(2015~2024) 스마트 금형분야 로드맵(2015~2024) 맞춤형 개인용품분야 로드맵(2015~2024) 3D 전자부품분야 로드맵(2015~2024) 수송기기 부품분야 로드맵(2015~2024) 3D프린팅 디자인 서비스분야 로드맵(2015~2024) 3D프린팅 콘텐츠 유통 서비스분야 로드맵(2015~2024) 3대 분야(장비·소재·소프트웨어) 핵심 요소기술 로드맵(2015~2024) 소재 분야 핵심 요소기술 로드맵(2015~2024) 소프트웨어 분야 핵심 요소기술 로드맵(2015~2024) 3D프린팅 시스템 중소기업형 기술개발 로드맵 3D프린팅 소재 중소기업형 기술개발 로드맵

II. 의료용 3D프린팅, 바이오(인공)장기, 생체재료 기술, 시장동향 199 <그림2-1> 티앤알바이오팹이 시판한 생분해성 의료용 메쉬(T&R mesh) 208 <그림2-2> 시판에 들어간 두 개악안면 재생·재건용 생분해성 의료제재(범용제품) 209 <그림2-3> 서울성모병원 환자맞춤형 안면윤곽재건 수술 사례 210 <그림2-4> 캐리마, 국내 최초로 3D프린터에서 출력이 가능한 실리콘 러버 개발 211 <그림2-5> 의료용 3D프린터의 활용가능 분야 219 <그림2-6> 3D 프린팅 기술 기반 인체조직 지지체 제작 공정 예시 221 <그림2-7> 3D프린팅의 분야별 활용 비중 223 <그림2-8> 맞춤형 인공관절 수술과정 226 <그림2-10> 3D 프린터로 만든 티타늄 턱뼈 228 <그림2-10> 3D 프린터로 만든 티타늄 턱뼈 228 <그림2-11> 수술전 인쇄한 뼈 IM Nailing 시뮬레이션 229 <그림2-12> IM Nailing 시뮬레이션 (X-ray 이미지) 229 <그림2-13> 3D프린팅을 이용해 제작된 골반 모델 229

<그림2-14>	3D 프린팅을 이용해 만든 인공고관절	230
<그림2-15>	골반골절 환자의 모형	231
<그림2-16>	3D프린팅으로 제작된 인공골반	232
<그림2-17>	맞춤형 두개골 보형물	233

<그림2-18>	3D 프린터로 제작된 티타늄 두개골 모형	233
<그림2-19>	두개골이 함몰됐을 때와 두개골 수술을 한 후의 모습	234
<그림2-20>	3D프린팅으로 제작된 두개골	234
<그림2-21>	3D프린팅을 통해 제작된 인공머리뼈	235
<그림2-22>	3D 프린팅을 이용하여 제작된 쇄골 골절 모델(clavicle fracture model)	236
<그림2-23>	쇄골환자 맞춤형 쇄골 골절 모델(clavicle fracture model)의 사진	237
<그림2-24>	3D 프린터로 제작한 인공 광대뼈	238
<그림2-25>	눈 선상이 일직선이지 않은 상태	239
<그림2-26>	안면기형 환자의 수술 전후	239
<그림2-27>	3D프린터로 재현된 고흐의 귀	241
<그림2-28>	3D 프린팅을 이용한 인공기관 제작 과정	242
<그림2-29>	3D 프린팅을 이용한 중추신경세포 인쇄 개념도	242
<그림2-30>	3D 프린터를 이용한 얼굴 뼈 출력물	243
<그림2-31>	3D 프린팅을 이용한 안면 복원	243
<그림2-32>	3D 프린터로 제작한 부비동암 환자의 골격 모형물	245
<그림2-33>	3D 프린터로 제작한 얼굴 결손 부위 모형물	246
<그림2-34>	스킨 프린트 과정	248
<그림2-35>	3D 프린팅을 이용해 만든 인공심장	249
<그림2-36>	3D 프린터로 제작한 인공판막	250
<그림2-37>	프레시를 이용해 제작된 관상동맥	250
<그림2-38>	프레시의 공정도	251
<그림2-39>	Organovo의 3D 프린터를 이용한 인공장기 제작	252
<그림2-40>	3D 프린팅을 이용해 만든 간 조직	252
<그림2-41>	3D프린팅 된 네프론 조직	253
<그림2-42>	바이오 페이퍼와 바이오 잉크를 이용해 작은 튜브의 혈관을 만드는 제조과정 …	254
<그림2-43>	이식된 인공혈관의 초음파 이미지	255
<그림2-44>	3D 프린팅 기술을 이용해 대동맥류 환자의 혈관을 본 뜬 모형	255
<그림2-45>	3D 프린터로 출력한 기관지 도관 디바이스	256
<그림2-46>	수술 후 접합된 환자의 기관지	257
<그림2-47>	심혈관 모형을 통한 혈류 분석	257
<그림2-48>	3D프린팅 된 갑상선 조직의 이미지	258
<그림2-49>	3D 프린터를 이용한 인공기관 제작과정	259
<그림2-50>	3D 프린터로 제조된 내시경 부속기구	259
<그림2-51>	3D 프린터로 제조된 보철물	260
<그림2-52>	3D 프린터를 이용해 만들어진 의수와 의족	261
<그림2-53>	맞춤형 의족 덮개	262
<그릮2-54>	3D 프린팅 의수 핵베리	262

<그림2-55>	3D 프린팅 의수 오픈 핸드 프로젝트	· 262
<그림2-56>	3D프린터로 제작한 로봇핸드	· 263
<그림2-57>	울티메이커 3D 프린터	· 264
<그림2-58>	맞춤형 외골격 캐스트	· 264
<그림2-59>	크라운(crown) & 브릿지(bridge) ······	· 265
<그림2-60>	치과에서 활용되는 3D 모델	· 266
<그림2-61>	오브젯 3D 프린터에서 제작한 임플란트	· 266
<그림2-62>	맞춤형 보청기	· 266
<그림2-63>	맞춤형 보청기의 제작과정	· 267
<그림2-64>	3D프린팅으로 제작된 칫솔	· 268
<그림2-65>	3D 프린터용 바이오잉크를 개발해 심근 조직(왼쪽)과 연골 조직	· 270
<그림2-66>	천사의 형상(Shape od an Angel)	· 272
<그림2-67>	실습용 카데바	· 273
<그림2-68>	3D 프린터로 제조된 두개골 모형	· 274
<그림2-69>	3D 프린터를 활용한 수술실습	· 275
<그림2-70>	산화철입자를 이용한 유리화 동결과 해동 프로세스	· 285
<그림2-71>	세계 지역별 인체조직 수출 현황	· 293
<그림2-72>	마그네슘 합금 임플란트에 대한 전자현미경 분석	· 302
<그림2-73>	인공관절 수술방법	· 307
<그림2-74>	대륙별 창상피복재 시장 비율(2013)	· 312
<그림2-75>	국내 창상피복재 시장 규모	· 314
<그림2-76>	국내 창상피복재 시장 점유율(2013)	· 314
<그림2-77>	인공심장과 융합기술	• 333
<그림2-78>	선진국의 10대 사망원인	· 334
<그림2-79>	라이프리버 바이오 인공간 개요	· 338
<그림2-80>	인공장기 및 보조 재료의 국가, 연도별 출원동향	· 345
<그림2-81>	해외특허 주요 출원인의 출원 현황	· 346
<그림2-82>	연도별 국내 출원동향 및 연도별 내국인/ 출원인 출원비율	· 347
<그림2-83>=	국내 주요 출원인의 출원현황	· 348
<그림2-84>	인공장기 및 보조 재료의 중소기업 형 로드맵	· 350
<그림2-85>	생체재료 기술 발전 방향	· 352
<그림2-86>	PU의 인공심장 및 인공혈관 적용	· 360
<그림2-87>	분해성(흡수성) 고분자 생체재료	• 363
<그림2-88>	금속 생체재료 적용 예	· 364
<그림2-89>	수산화아파타이트와 인공뼈	· 369
<그림2-90>	생체분해성 바이오 플라스틱 세계 시장 규모 추이	· 379
<그림2-91>	생체분해성 바이오 플라스틱(LA & PLA) 국내 시장 규모 추이	· 379

<그림2-92> 바이오세라믹스 기술의 국가·연도별 출원동향
<그림2-93> 해외특허 주요 출원인의 출원 현황
<그림2-94> 연도별 국내 출원동향 및 연도별 내국인/출원인 출원비율
<그림2-95> 국내 주요출원인의 출원 현황
<그림2-96> 바이오세라믹스의 중소기업 형 로드맵
<그림2-97> 맞춤형 경조직 대체재 환자적용례407
<그림2-98> 개념도
<그림2-99> 개념도
<그림2-100> 개념도
<그림2-101> 개념도
<그림2-102> 개념도
<그림2-103> 사업 개념도

Ⅲ. 의료	'용 3D 프린팅, 바이오장기 관련 사업 참여업체 사업동향4	67
<그림3-1	1> 환자맞춤형 인공 발뒤꿈치뼈	484
<그림3-2	2> FDM 열가소성 수지 재료	491
<그림3-3	3> PolyJet 재료 ···································	492

Ⅳ. 3D 프린터 이용 환자 맞춤형 의료기기 허가·심사 가이드라인(요약, 식약처) ·····545

<그림4-1> 3D 프린터로 제조되는 정형용 임플란트 제조 공정 흐름도	17
<그림4-2> 허가 처리 흐름도	18
<그림4-3> 3D 프린팅 정형용 임플란트의 기공도 실험 장비 예시	59
<그림4-4> 중심선 평균 거칠기	31
<그림4-5> 측정구간에서의 Rmax 값	51
<그림4-6> 밀도 시험 측정 장치 모식도	34
<그림4-7> 밀도시험에 사용한 장치 예시	34
<그림4-8> 정형화되지 않은 두개골성형재료의 3차원 스캐너를 이용한 치수 정확도 측정 예시 … 56	38
<그림4-9> 3D 프린터로 제조되는 치과용 임플란트 고정체 제조 공정 흐름도	31
<그림4-10> 허가 처리 흐름도	32
<그림4-11> 내부 연결형(internal connection type)의 경우	34
<그림4-12> 외부 연결형(external connection type)의 경우	35
<그림4-13> 3D 프린팅 치과용 임플란트 고정체의 기공도 실험 장비 예시)3
<그림4-14> 중심선 평균 거칠기	<i>)</i> 5
<그림4-15> 측정구간에서의 Rmax 값	<i>)</i> 5
<그림4-16> 밀도 시험 측정 장치 모식도) 8
<그림4-17> 밀도시험에 사용한 장치 예시) 8
<그림4-18> 정형화되지 않은 의료기기의 3차원 스캐너를 이용한 치수 정확도 측정 예시 … 60)2

<그림4-19>	피부재생용 생분해성 지지체 예시(출처 : 성균관대학교)	609
<그림4-20>	생분해시험 시 고려사항에 대한 흐름도	614
<그림4-21>	인장강도 시료의 주형	630
<그림4-22>	혈관재생용 생분해성 지지체 예시(출처 : 성균관대학교)	636
<그림4-23>	생분해시험 시 고려사항에 대한 흐름도	641
<그림4-24>	풍선 파열시험 장치(Balloon burst test device)	647
<그림4-25>	시험 면적 또는 시료 시료의 위치	649
<그림4-26>	봉합부위 유지 강도 시험의 예 - 측면	663