목차

2) ICT융복합 산업의 발전방향	
2-2. ICT 융합산업 현황 및 전망	
2-3. 5대 주력산업 IT융합산업 주요동향	
1) 자동차 IT융합	
2) 조선・해양플랜트 IT융합	
3) 섬유 IT융합	62
4) 국방・항공 IT융합	
5) 에너지 IT융합	
3. IT융합 확산전략(2013-2017)과 정책동향	
3-1. IT융합 정책 개요	
3-2. IT융합 확산전략 세부내용	
1) 추진배경	
2) 지난 4년간의 IT융합 추진성과	
3) 추진방향	······ 72
4) 정책과제	······ 72
(1) IT융합을 통한 주력산업 글로벌 경쟁력 제고	······ 72
(2) 생활밀착형 IT융합서비스 창출	
(3) IT융합 공통 인프라 확충	
5) 기대효과	
6) 추진체계 및 일정	
(1) 추진 체계	
(2) 범부처 'IT융합 정책협의회(가칭)'구성·운영	
(3) 추진 일정	

Ⅱ. 지능형교통시스템(ITS) 관련기술, 시장 동향과 전망 ……………109

1.	지능형교통시스템(Intelligent Transport Systems) 개요	109
1	1. 개념과 특징	109
	1) 개념	109
	2) 중요성	109
	(1) 교통물류 경쟁력 강화 및 사회적 비용 절감	109
	(2) 저탄소 녹색교통체계 실현	110
	(3) 공생발전 및 일자리 창출	110
	(4) 미래 신성장동력산업 육성	110
	3) 지능형교통시스템(ITS) 관련 사업분야와 사업모델	111

(1) ITS 서비스 분야	•••• 111
(2) ITS 시장 구성 분야별 비중	•••• 111
1-2. 국내 ITS 추진 현황과 과제	···· 113
1) 국내 ITS 추진 현황	···· 113
(1) 인프라 구축	···· 113
(2) 서비스 제공	···· 115
2) 국내 ITS 시장 과제	116
(1) 효과적인 교통관리·운영을 위한 인프라 부족	116
(2) 서비스 품질 및 운영 전문성 확보 미흡	···· 117
(3) ITS에 특화된 지원체계 미흡	118
(4) 차세대 신성장 서비스 발굴 부진	···· 120
2. 국내 ITS 산업 육성 정책동향	···· 121
2-1. 국내 ITS발전전략	···· 121
1) 목표 및 추진전략	···· 121
2) 추진전략	···· 122
(1) 전략-1. 인프라 확대 및 고도화	···· 122
(2) 전략-2. 서비스 및 운영의 품질 향상	···· 128
(3) 전략-3. 글로벌 경쟁력 기반 확충	···· 131
(4) 전략-4. 차세대 기술・서비스 개발	···· 135
3) 기대효과	138
4) 추진일정(Action Plan)	139
(1) 인프라 확대 및 고도화	139
(2) 서비스・운영 품질 향상	139
(3) 글로벌 경쟁력 기반 확충	140
(4) 차세대 기술・서비스 개발	···· 140
2-2. 국내 ITS 활성화 대책	•••• 141
1) 차세대 ITS 구축 중장기 로드맵 수립	•••• 141
(1) 2014년~2016년	•••• 141
(2) 2017년~2020년 ·····	141
(3) 2021년~2030년	···· 142
2) 차세대 ITS 활성화 대책 추진	···· 142
(1) 핵심기술 연구개발 및 전용 주파수 확보	···· 142
(2) 법·제도적 기반 마련	···· 142
(3) 표준 및 인증의 국제규격화	···· 143
(4) 산업 활성화	•••• 143

(5) 해외수출 지원	• 143
2-3. 지능형 교통시스템(C-ITS) 개발동향과 추진현황	• 144
1) 지능형 교통시스템(C-ITS) 기술 개황	• 144
(1) 개념과 이해	• 144
(2) 기존 ITS 및 C-ITS 기술 비교	· 147
(3) C-ITS 기술 구성요소	· 148
2) 지능형교통시스템(C-ITS)용 WAVE 시스템 개발동향	· 150
(1) IEEE 802.11p	· 153
(2) IEEE 1609 시리즈 ······	• 153
3) 국내 지능형교통시스템(C-ITS) 추진 현황	• 154
(1) ITS 추진전략과 세부내용	• 154
(2) 차세대 ITS 활성화 추진	• 160
3. 해외 ITS 시장동향과 주요 정책	• 165
3-1. 개요	• 165
3-2. 해외 지능형교통시스템(C-ITS) 추진 현황	• 166
1) 유럽	• 166
(1) CVIS	• 169
(2) COOPERS	• 169
(3) SAFESPOT ·····	• 170
(4) COMeSafety	• 171
(5) TeleFOT ·····	·• 172
(6) DriveC2X ·····	• 173
(7) FOTsis ·····	• 174
2) 미국	·· 177
(1) VII (Vehicle Infrastructure Integration)	· 177
(2) $IntelliDrive^{SM}$	· 179
(3) Connected Vehicle	• 181
(4) Safety Pilot ·····	· 182
3) 일본	• 184
(1) VICS	· 185
(2) DSSS	· 187
(3) Smartway ·····	· 188
(4) ITS SPOT ······	• 189
4) 중국	• 193
(1) 교통체증 심화	• 193

(2) ITS 도입 효과
(3) 산업현황 및 전망
(4) 경쟁 동향
5) 러시아
(1) ITS 동향 ······197
(2) 러시아 ITS산업의 진입장벽
3-3. 주요국의 최근 ITS관련 주요 정책동향
1) 2014년 EC의 지능형 교통 시스템(ITS) 상용화를 위한 정책 199
(1) 유럽의 ITS 정책 등장 배경
(2) 유럽위원회(EC)의 ITS 활성화 정책 추진 동향
(3) 유럽의 ITS 향후 정책 추진 방향성과 시사점
2) EU, 핵심 TEN-T 인프라 프로젝트에 3.2억 유로 지원
3) EU, 커넥티드 카 표준 승인으로 관련 산업 발전 기대
4) 미국,「차량 간 통신기술(Vehicle-to-Vehicle, V2V) 의무화 예고 207
(1) 개요 ~~~~~ 207
(2) 주요 내용
(3) 고려사항

1. ITS 관련 도로기반 기술동향	
1-1. 국내 스마트 하이웨이 개발동향	
1) 기술 개황	
(1) 개발 배경	
(2) 개념과 목적	
2) 국내 스마트하이웨이 사업 추진 동향	
(1) Smart Highway 사업 개요	219
(2) 스마트하이웨이 사업단의 주요 과제	······ 222
(3) 스마트 하이웨이 사업단의 주요 기술	
(4) 스마트하이웨이 사업단의 주요 개발 기술	······ 223
(5) Smart Mobility 기획 연구	
1-2. 해외 주요 스마트하이웨이 추진 사례	
1) 미국(Connected Vehicle) ······	229
2) 유럽	
(1) CVIS	
(2) SAFESPOT ······	

(3) DRIVE C2X ·····	····· 232
3) 일본	····· 233
(1) Smartway ·····	····· 233
(2) ITS Safety 2010	····· 233
2. ITS관련 자율주행차 기술 동향	····· 234
2-1. 자율주행차 기술동향	····· 234
1) 자율주행 기술개발 전망	····· 234
2) 자율주행차 발전 단계	····· 236
3) 자율주행차 기반요소 기술동향	····· 237
2-2. 군집주행 기술 동향	····· 239
1) 유럽의 개발 동향	····· 241
(1) Chauffeur ·····	····· 241
(2) KONVOI ·····	····· 241
(3) SARTRE ·····	····· 241
2) 미국의 개발동향	····· 242
(1) 캘리포니아 PATH	····· 242
3) 일본의 개발동향	····· 242
4) 한국의 개발동향	243
3. ITS 관련 통신기반 기술동향	244
3-1. 자동차용 통신기술 개발동향	244
1) 자동차 내부 통신 (IVC) ······	245
2) 자동차 간(V2V) 통신 ······	····· 246
3) 자동차와 인프라 간(V2I) 통신	248
4) 이더넷	249
3-2. V2V 통신시스템을 위한 주파수 및 기술 이용 계획	254
3-3. 주요 국가별 자동차용 통신기술 주진현황	255
1) 미국	255
2) 유럽	256
3) 일본	258
4) 한국	259
3-4. 자동차통신 보안기술 동향	260
1) 보안 요구 사항	260
(1) 인증 및 데이터 무결성	260
(2) 기밀성	····· 261

(3) 프라이버시 보호	····· 262
(4) 부인 봉쇄	····· 262
(5) 가용성	····· 263
2) IEEE 1609 WAVE 및 보안 기술	····· 264
3) 주요 보안 기술 요소	····· 265
(1) 하드웨어 기반 고속 암호화 기술	····· 265
(2) 타원 곡선 암호 기반의 메시지 인증 기술	····· 265
(3) 프라이버시 보호형 인증 기술	····· 266
4) 주요 국내외 적용 사례	····· 266
4. ITS관련 기술 연구개발동향과 전략	····· 267
4-1. 2014년 지능형자동차 상용화 연구기반 구축사업	····· 267
1) 차량용 음성인식모듈을 위한 MEMS 기반 마이크로폰 개발	····· 268
(1) 필요성	268
(2) 연구목표	····· 268
(3) 지원내용	····· 269
2) 대형차량용 1440도급 조향 토크-앵글 센서 개발	····· 269
(1) 필요성	269
(2) 연구목표	····· 269
(3) 지원내용	····· 270
3) AVN에 적용 가능한 적외선 센서 기반 제스처 인식 시스템 개발·	270
(1) 필요성	····· 270
(2) 연구목표	····· 271
(3) 지원내용	····· 271
4) 곡률반경 150mm이하, 투과율 88%이상급 정전용량 곡률형	
터치패널 개발	····· 271
(1) 필요성	····· 271
(2) 연구목표	····· 272
(3) 지원내용	····· 273
5) 차체 패널을 매질로 하는 엔진음 발생기(Sound Generator)	
핵심부품 개발	····· 273
(1) 필요성	····· 273
(2) 연구목표	····· 273
(3) 지원내용	····· 274
6) 운전자 시인성 향상을 위한 위치 및 각도 가변형 디지털	
클러스터 기술 개발	····· 274

(1) 필요성	287
(2) 연구목표	287
(3) 지원내용	288
8) 차량 주행 상태 정보를 활용하여 스마트 디바이스/내비게이션 등과	
연계 가능한 스마트 운행기록계 개발	288
(1) 필요성	288
(2) 연구목표	289
(3) 지원내용	290
9) 스마트 블랙박스 및 모니터링	290
10) 차량과 스마트폰 연계 기술	290
4-3. 산업핵심 기술개발사업	291
1) 외부 Connectivity를 지원하는 차량용 멀티코어 기반 멀티도메인	
융복합 ECU 플랫폼 개발(표준화 연계)	291
(1) 필요성	291
(2) 연구목표	292
(3) 지원내용	294
2) 자동차 스마트키 기능을 포함하는 운전자용 밴드타입 웨어러블	
디바이스 플랫폼 개발	294
(1) 필요성	294
(2) 연구목표	294
(3) 지원내용	295
3) Euro NCAP AEB 대응을 위한 중거리(150m 이상) 레이더 개발	295
(1) 필요성	295
(2) 연구목표	296
(3) 지원내용	296
4-4. 시스템반도체상용화 기술개발사업	297
1) 안전주행시스템을 위한 고해상도 영상처리 통합 SoC 및 임베디드	
SW 개발	297
(1) 필요성	297
(2) 연구목표	298
(3) 지원내용	299
4-5. 2013년 산업융합원천기술개발사업	300
1) 운전 미숙자 지원을 위한 자동 차선 변경 시스템 원천 기술 개발	300
(1) 필요성	300
(2) 연구목표	300
(3) 지원내용	301

2) 보행자 보호를 위한 자동 긴급 제동(AEB) 시스템 원천 기술 개발
(표준화 연계)
(1) 필요성
(2) 연구목표
(3) 지원내용
3) 운전자 전방 주시 집중도 향상을 위한 초점거리 7.5m 이상 HUD
시스템 개발303
(1) 필요성
(2) 연구목표
(3) 지원내용
Ⅳ. 부록 - 참고자료
1. 국토교통분야 10대 중점 프로젝트 (Value Creator 2.0) 현황
1-1. 한국형 위성항법
1) 시장 현황
(1) 세계 시장동향
(2) 국내 시장동향
2) 시장 전망311
3) 기술개발 방향
1-2. 자율주행도로
1) 시장 현황
(1) 세계 시장동향
(2) 국내 시장동향
2) 시장 전망
3) 기술개발 방향
1-3. 미래 항공기술 인프라 조성
1) 시장 현황
(1) 세계 시장동향
(2) 국내 시장동향
2) 시장 전망
3) 기술개발 방향
1-4. 인공지능 국토공간
1) 시장 현황
(1) 세계 시장동향
(2) 국내 시장동향

2) 시	장 전망	324
3) 7]	술개발 방향	325
1-5. 스	마트 철도교통시스템	326
1) 시	장 현황	326
(1)	세계 시장동향	326
(2)	국내 시장동향	327
2) 시	장 전망	327
3) 7]	술개발 방향	328
2. 2040 국	·토교통 200대 미래 유망기술 리스트 ·····	330
3. 대도시·	권 광역교통시행계획 변경(안)(2012~2016) ·······	337
3-1. 계	획의 개요	337
1) 수	립배경	337
2) 수	립목적	337
3) 법	적근거	337
4) 계	획의 범위	337
5) 계	획의 성격 ······	338
6) 주	진경위	338
3-2. 주	진성과 및 한계	339
1) 주	진성과	339
2) 한	계점	340
3) 수	립방향	341
3-3. 광	역교통 현황 및 문제점 진단	342
1) 광	역교통권역 및 교통죽	342
2) 사	회경제지표	344
3) 교	통시설현황 ······	346
4) 동	행실태 ······	348
5) 권	역별 노로 혼잡도	348
6) 권	역별 광역교통 문제점 진단	351
3-4. 광	역교농 여건전망	357
1) 장	래 권역별 공간구조 변화 ······	357
2) 도	시성상지표 전망	360
3) 통	행량 변화 전망	361
4) 장	래(2016년) 광역죽별 혼잡도 분석	361
5) 장	래(2016년) 교통죽별 예상 문제점	364

3-5. 시행계획의 비전 및 목표
3-6. 주요 추진대책
1) 광역간선교통망 개선방향
2) 광역간선교통망 구축 계획
(1) 기본계획의 광역간선철도망 계획
(2) 광역간선도로망 계획
3) 광역교통시설 확충계획
(1) 광역교통시설 선정기준
(2) 광역도로 확충계획
(3) 광역철도 및 간선급행버스체계(BRT)
(4) 환승시설 및 공영차고지
4) 운영 효율화
3-7. 투자계획 및 재원조달 방안
1) 투자규모 산정
(1) 예산 배정
(2) 투자예상규모 산정
2) 투자계획
(1) 광역도로
(2) 광역철도
(3) 간선급행버스 체계 404
(4) 환승주차장
(5) 환승시설
(6) 공영차고지
3) 재원조달 방안
3-8. 추진효과
1) 성과·효과분석 지표
2) 추진효과

표목차

I. IoT 시대의 등장과 ICT 융복합 산업 동향
<표1-1> 도시 운영 관련 사물인터넷 도입 주요 사례 및 향후 10년간 창출
가치
<표1-2> 세계 및 국내 사물인터넷 부문별 시장 현황과 전망
<표1-3> 세대별 이동통신 주요 특징
<표1-4> 'METIS 2020' 참여 주체
<표1-5> 5G 이동통신 후보기술 특허출원 동향 (2010 ~ 2014년) 45
<표1-6> 4G관련 특허 현황
<표1-7> ICT융합 산업의 분류
<표1-8> IT융합산업 세계시장 성장 추이 및 전망 (단위 : 억 US\$) 54
<표1-9> ICT융합분야 연구과제 현황 (단위 : 백만원)
<표1-10> 산업융합원천 R&D 전략(2013~2017) 중 IT융합분야58
<표1-11> 국내외 조선IT융합 시장규모 및 전망62
<표1-12> 국내외 섬유IT융합분야 시장 전망(단위 : 억달러)63
<표1-13> 주요 선진국별 국방 R&D 수행 현황63
<표1-14> IT융합정책 추진경과(2008~)69
<표1-15> 「IT융합 확산전략」정책 방향
<표1-16> 먹을거리 IT융합 국내 주요 기업현황79
<표1-17> 먹을거리 IT융합 해외 주요 기업현황80
<표1-18> 세계 e-트레이닝 시장 규모
<표1-19> 글로벌 이러닝 시장 지역별 매출현황 및 전망83
<표1-20> 부문별 이러닝 시장규모 및 구성비 (단위 : 억원, %)
<표1-21> 국내 e-트레이닝 시스템 개발(도입) 현황84
<표1-22> 의료IT분야 주요 HW기술수준 비교88
<표1-23> 헬스케어 IT융합 최근 동향

<표1-24>	국내 헬스케어IT 시장 전망(단위 : 억원)	89
<표1-25>	미국과 일본의 원격의료 관련 법 비교	89
<표1-26>	국내 이해관계자 의견 및 요구사항	89
<표1-27>	영상감시산업 기업분포 (단위 : 업체수)	92
<班1-28>	세계 영상감시 시장규모(단위 : 천불)	92
<표1-29>	영상감시산업 기업활동 (단위 : 천불)	93
<표1-30>	재난 및 소방정보화 SI 기업분포	93
<표1-31>	ITS 세계시장 규모 (단위 : 백만 달러)	96

<표2-1> 서울시 기수립 계획의 기존 지능형교통체계(ITS) 사업 확대 구축·156 <표2-4> ITS 세계시장 규모 (단위 : 백만 달러)165 <표2-5> Societal challenges에서 제안된 예산 규모 (단위 : 백만 유로) 168 <표2-7> TeleFOT의 상세 FOT의 어플리케이션172 <표2-8> TeleFOT의 대규모 FOT의 어플리케이션173 <표2-10> FOTsis의 FOT에서의 어플리케이션175 <표2-13> DSSS 서비스 ······188

Ⅲ. ITS	관련 산업과 기술개발 동향	213
<표3-1>	스마트하이웨이 핵심과제군	217
<표3-2>	국토부 스마트 하이웨이 주요 시연 내용(2013.5.10)	218
<班3-3>	Smart Highway 사업의 목적 및 전략	219
<표3-4>	스마트 하이웨이 사업단의 주요 과제	222
<班3-5>	Smart Highway 사업의 주요 기술	222
<班3-6>	스마트 하이웨이 사업단의 주요 개발 기술	223
<班3-7>	SMART-I 개념 ·····	224
<표3-8>	기존 기술과의 차이점	225

<표3-9> SMART-I 시스템 개발 성과
<표3-10> Smart Mobility 기획 연구 로드맵(예시)
<표3-11> 주요 기관별 자율주행차 시장 전망
<표3-12> 자동차 자동화 레벨 정의
<표3-13> 자율주행차 요소 ICT 기술 구분
<표3-14> 해외 각국의 주요 (군집주행) 프로젝트 비교
<표3-15> 국가별 차량간 통신용 WiFi 기술 검토 현황
<표3-16> WAVE 표준화 현황

Ⅳ. 부록 - 참고자료	307
<표4-1> ITS 세계시장 규모(단위 : 백만 달러)	315
<표4-2> 국내 공간정보산업 시장규모	325
<표4-3> 철도 세계시장 규모 전망(단위 : 천억원)	327
<표4-4> 주요사업 추진성과	340
<표4-5> 인구수 변화 (단위: 천인)	344
<표4-6> 학생수 변화 (단위: 천인)	344
<표4-7> 종사자수 변화 (단위: 천인)	345
<표4-8> 자동차 등록대수(단위: 천대)	345
<표4-9> 도로시설 현황(2009년)	346
<표4-10> 철도시설 현황(2009)	346
<표4-11> 버스전용차로시설 현황(2009)	347
<표4-12> 환승시설 및 공영차고지 현황(2009)	347
<표4-13> 대도시 권역별 통행실태	348
<표4-14> 수도권 광역교통축 혼잡도	349
<표4-15> 부산・울산권 광역교통축 혼잡도	349
<표4-16> 대구권 광역교통축 혼잡도	350
<표4-17> 광주권 광역교통축 혼잡도	351
<표4-18> 대전권 광역교통축 혼잡도	351
<표4-19> 수도권 교통축별 문제점 진단	352
<표4-20> 부산·울산권 교통축별 문제점 진단 ······	353
<표4-21> 대구권 교통축별 문제점 진단	354
<표4-22> 광주권 교통축별 문제점 진단	355
<표4-23> 대전권 교통축별 문제점 진단	356
<표4-24> 권역별 사회경제지표 전망(2016년)	360
<표4-25> 장래 목적/수단 통행량 전망 (2016년)(천통행/일)	361

<표4-26>	수도권 광역교통축 혼잡도	362
<표4-27>	부산·울산권 광역교통축 혼잡도	362
<표4-28>	대구권 광역교통축 혼잡도	363
<표4-29>	광주권 장래 주요도로 V/C	363
<표4-30>	대전권 장래 주요도로 V/C	364
<표4-31>	5대권역 광역교통축 예상 문제점	364
<표4-32>	수도권 교통축별 예상 문제점	365
<표4-33>	부산 울산권 교통축별 문제점	366
<표4-34>	대구권 교통축별 문제점	367
<표4-35>	광주권 교통축별 문제점	368
<표4-36>	대전권 교통축별 문제점	369
<표4-37>	수도권 광역간선교통망 문제점 및 개선방향	371
<표4-38>	부산・울산권 광역간선교통망 문제점 및 개선방향	372
<표4-39>	대구권 광역간선교통망 문제점 및 개선방향	373
<표4-40>	광주권 광역간선교통망 문제점 및 개선방향	374
<표4-41>	대전권 광역간선교통망 문제점 및 개선대책	374
<표4-42>	수도권 대중교통망 계획	375
<표4-43>	부산・울산권 광역대중교통망 계획	376
<표4-44>	대구권 광역대중교통망 계획	376
<표4-45>	광주권 광역대중교통망 계획	377
<표4-46>	대전권 광역대중교통망 계획	377
<표4-47>	수도권 광역간선도로망 계획	378
<표4-48>	부산 울산권 광역간선도로망 계획	380
<표4-49>	대구권 광역간선도로망 계획	382
<표4-50>	광주권 광역간선도로망 계획	383
<표4-51>	대전권 광역간선도로망 계획	383
<표4-52>	수도권 광역도로	385
<표4-53>	부산 울산권 광역도로	386
<표4-54>	대구권 광역도로	387
<표4-55>	광주권 광역도로	387
<표4-56>	대전권 광역도로	388
<표4-57>	수도권 광역철도	389
<표4-58>	수도권 간선급행버스체계(BRT)	390
<班4-59>	부산·울산권 광역BRT	390
<표4-60>	대전권 광역BRT	390

<표4-61> 수도권 환승주차장
<표4-62> 수도권 환승시설
<표4-63> 수도권 공영차고지
<표4-64> 부산·울산권 환승시설
<표4-65> 부산·울산권 공영차고지
<표4-66> 대구권 환승시설
<표4-67> 대구권 공영차고지
<표4-68> 광주권 공영차고지
<표4-69> 대전권 환승주차장
<표4-70> 대전권 공영차고지
<표4-71> 연차별 광역교통시설 계정 투자규모(단위: 억원) 402
<표4-72> 연차별 광역교통시설계정 투자규모 예측(2012~2015) 402
<표4-73> 권역별 광역교통시설 투자계획 (2012~2016)(단위: 억원) 403
<표4-74> 광역도로 투자계획(단위: 억원) 403
<표4-75> 광역철도 투자계획(단위: 억원) 404
<표4-76> 간선급행버스체계 투자계획 (단위: 억원) 404
<표4-77> 환승주차장 투자계획(단위: 억원) 404
<표4-78> 환승시설 투자계획 (단위: 억원) 405
<표4-79> 공영차고지 투자계획 (단위: 억원) 405
<표4-80> 성과·효과분석 지표
<표4-81> 효과분석 지표

그림목차

I. IoT 시대의 등장과 ICT 융복합 산업 동향
<그림1-1> ITU가 제시하는 사물 인터넷 시대의 사물 및 통신 환경의 변화·29
<그림1-2>사물 인터넷의 서비스 예시
<그림1-3> 사물 인터넷 밸류 체인 구조
<그림1-4> 사물 인터넷 서비스 인터페이스 역할
<그림1-5> 사물인터넷 연결의 역사
<그림1-6> IoT 탑재기기 성장 전망(단위: Billion, unit)
<그림1-7> 2020년 IoT의 산업별 부가가치 비중 전망
<그림1-8> 세대별 이동통신 개발 연혁
<그림1-9> B4G·5G 이동통신의 표준화 대상 기술
<그림1-10> WWRF의 주요 결과물40
<그림1-11> EU FP7의 차세대 통신 관련 프로젝트 40
<그림1-12> 테스트 케이스(TC) 및 케이스별 요구해결 과제 42
<그림1-13> 5GPPP 운영 계획43
<그림1-14> 세계 M2M 시장 전망(금액 기준)47
<그림1-15> 세계 M2M 연결기기 수 전망48
<그림1-16> 국내 M2M 가입자 수 현황48
<그림1-17> '12년 산업별 M2M 도입 현황 49
<그림1-18> ICT 융합을 통한 가치혁신 및 효과
<그림1-19> IT산업 패러다임의 변화 추이
<그림1-20> 세계 IT융합산업 시장전망 (단위 : 억달러)
<그림1-21> 국내 IT융합산업 시장전망 (단위 : 억달러)
<그림1-22> 해외 자동차 IT융합 시장규모60
<그림1-23> 국내 자동차 IT융합 시장규모60

<그림1-24>	자동차용 반도체 시장규모	61
<그림1-25>	조사대상 기업의 평균 IT융합 매출, R&D투자, 인력 추이	68
<그림1-26>	국내 이러닝 시장규모 (단위 : 억원)	84
<그림1-27>	헬스케어IT 서비스 흐름과 제약적 요소	86

Ⅱ. 지능형교통시스템(ITS) 관련기술, 시장 동향과 전망109
<그림2-1> ITS의 기본적인 구성 체계 및 운영 흐름
<그림2-2> ITS 서비스 분야와 사업모델 예시
<그림2-3> ITS 관련분야 시장 구성도
<그림2-4> 현재 구축·운영 중인 ITS 서비스 개요도
<그림2-5> ITS 인프라 구축 현황
<그림2-6> 지자체 교통정보센터 설치 현황
<그림2-7> 주요 교통정보 어플리케이션
<그림2-8> 기존 ITS 개념도
<그림2-9> V2X 개념도
<그림2-10> V2I, V2V 기반 도로-자동차 협업 서비스 개념도
<그림2-11> ITS 수출지원 협력체계
<그림2-12> 첨단교통모델도시 2.0 사업대상 서비스 예시
<그림2-13> 지능형 교통시스템(C-ITS) 환경
<그림2-14> ITS Station 참조 개략도146
<그림2-15> 차량 ITS Station146
<그림2-16> 기존 ITS 및 C-ITS 기술 비교
<그림2-17> C-ITS 구성
<그림2-18> ITS-스테이션 구조
<그림2-19> 차량 통신 시스템 구조
<그림2-20> WAVE 표준 통신 스택 구조
<그림2-21> 서울시 지능형교통체계(ITS) 서비스 추진현황158
<그림2-22> 사업대상구간
<그림2-23> 차세대ITS 개념도
<그림2-24> 세계의 Cooperative ITS 프로젝트 현황166
<그림2-25> 유럽의 ITS R&D 이력
<그림2-26> FP6 기반에서 진행된 주요 R&D167
<그림2-27> FP7 기반에서 진행된 주요 R&D168
<그림2-28> CVIS 시스템 구성도
<그림2-29> SAFESPOT 추진체계

-

<그림2-30>	주요 내용	180
<그림2-31>	Connected Vehicle Safety Program Partners and Contractors \cdot	182
<그림2-32>	Safety Pilot의 로드맵 ·····	183
<그림2-33>	일본의 C-ITS 개발	184
<그림2-34>	ITS-Safety 2010 개요 ·····	185
<그림2-35>	ITS-Safety 2010 추진과정 ······	185
<그림2-36>	VICS 개념도 ·····	186
<그림2-37>	ITS 서비스 응용	192
<그림2-38>	ITS SPOT을 이용한 신규 서비스	193
<그림2-39>	중국 ITS 산업 업종 분포 현황	194
<그림2-40>	2009~2013년 중국 ITS산업 규모 및 발전 전망 (억 위안)	195
<그림2-41>	주민 1000명당 자동차 대수와 도시의 자동차 평균 속도	198
<그림2-42>	EU 28개국 운송 및 이동 수단 비중과 교통사고 부상자 수	
	변화 추이	199
<그림2-43>	'C-ITS 플랫폼(C-ITS Platform)'의 로드맵 산출 프로세스	203
<그림2-44>	유럽 ITS 시장 규모 증가 추이(2012~2017)	205
	거 시시기 기시게바 도차 (010

Ш. 115 판단 산업과 기술개발 중앙
<그림3-1> 기존 도로의 문제점
<그림3-2> 스마트하이웨이사업 전체 구성도
<그림3-3> 미래 도로(스마트하이웨이) 핵심가치
<그림3-4> 스마트 하이웨이 사업 로드맵
<그림3-5> WAVE 통신방식의 핸드오버 기술 개념
<그림3-6> SMART-I 구성도
<그림3-7> 도로정보 검지 Radar System 개념도
<그림3-8> 스마트 톨링(Smart-Tolling) System
<그림3-9> 군집주행 기술 개념
<그림3-10> SARTRE 프로젝트의 작동 원리
<그림3-11> V2X 기반 도로-자동차 협업 서비스
<그림3-12> V2I / V2V ·································
<그림3-13> 차량용 이더넷 기술 구조도
<그림3-14> 이더넷 기술 표준화 동향
<그림3-15> 미국 미시건州 Ann Anrbor 지역의 파일럿 프로젝트 현장 256
<그림3-16> 유럽 SAFESPOT 프로젝트가 추진한 서비스 개념도
<그림3-17> 일본 ITS Green Safety 프로젝트에서 추진되는 서비스 258

Ⅳ. 부록 - 참고자료
<그림4-1> 4대전략, 10대 중점 프로젝트 개요
<그림4-2> GBAS 및 SBAS 개념도
<그림4-3> 전 세계 위성항법 시장 규모
<그림4-4> 전 세계 위성항법장비 시장 규모 추이
<그림4-5> ITS와 2X 개념도 ···································
<그림4-6> V2I, V2V 기반 도로-자동차 협업 서비스
<그림4-7> 전체 시장 전망 (年4% 성장예상)
<그림4-8> 세계 민항기 시장 전망
<그림4-9> 민간항공기 국산화 기반 구축 추진단계
<그림4-10> 공항운영기술 개발 주요과제
<그림4-11> 국내 지능형 국토교통정보 기술혁신사업
<그림4-12> U-City 시장 파급효과(단위 : 조원)
<그림4-13> 국가별 철도시장 점유율
<그림4-14> 대도시 권역별 광역교통권역 및 교통축
<그림4-15> 수도권 환승시설사업